聚乙烯亚胺改性聚酰胺反渗透膜的CO2/N2分离性能
作者:陈方正,崔万祥,庄林家,赵可君,王晋嘉,黄海,俞三传
单位: 1. 浙江浙能燃气股份有限公司,杭州 310008;2. 浙江理工大学 化学与化工学院,杭州 310018
关键词: 二氧化碳;促进传递;聚乙烯亚胺;膜分离
DOI号:
分类号: TQ051.893
出版年,卷(期):页码: 2024,44(4):130-139

摘要:
 传统二氧化碳(CO2)分离膜受“Trade-off”效应制约难以实现渗透性及分离选择性的同步提升,本文将聚乙烯亚胺(PEI)胺基载体分子通过静电作用负载于商业化聚酰胺(PA)复合反渗透膜表面,制备具有CO2促进传递功能的PEI-PA复合膜材料,并系统探究了膜制备与分离工艺对PEI-PA复合膜CO2/N2分离性能的影响规律。膜制备研究表明,复合膜的CO2渗透性能在一定范围内随PEI分子浓度提升而增大,且PEI改性层中胺基在pH中性环境中具有理想的CO2转运活性,在最佳改性条件下(改性溶液中PEI质量分数2.0 %、分子量1800 g/mol、pH值7),复合膜CO2渗透性和CO2/N2分离选择性可达96.9 GPU和90.0,较改性前分别提升37.8%和22.4%。分离实验表明,复合膜CO2渗透速率在一定范围内随压力升高而增大,过高压力下CO2渗透速率趋近饱和且低于N2提升幅度,导致CO2渗透速率和气体分离选择性衰减;而气体温度与流速升高将显著提高N2渗透速率,导致气体分离选择性下降。研究结果验证了将反渗透水处理膜转化为CO2气体分离膜的可行性,为工业化放大实践提供了可靠依据。
 
Traditional carbon dioxide (CO2) separation membranes are subject to the "Trade-off" effect, which makes it difficult to realize the simultaneous improvement of permeability and separation selectivity. In this study, polyethyleneimine (PEI) was selected as amine-based carrier molecules and loaded onto the surface of commercial polyamide (PA) composite reverse osmosis membrane by electrostatic deposition to prepare composite PEI-PA membrane for the facilitated transport of CO2. The influences of membrane fabrication and separation process conditions on the CO2/N2 separation performance of the obtained PEI-PA membrane were systematically investigated. The study of membrane preparation showed that the CO2 permeability of the composite membrane increased with the concentration of PEI in a certain range. And the amine groups in the PEI modified layer had ideal transport activity of CO2 at the neutral pH. Under the optimal modification conditions (2.0% mass fraction of PEI with molecular mass of 1800 g/mol, pH=7), the CO2 permeability and CO2/N2 selectivity of the composite membrane could reach 96.9 GPU and 90.0, which were 37.8% and 22.4% higher than unmodified membranes, respectively. Separation performance test showed that the CO2 permeation increased with the pressure in a certain range. But it would approach saturation and become lower in growth proportion than N2, resulting in attenuation of the CO2 permeation ratio and CO2/N2 selectivity. Besides, the increase of gas temperature and flow rate significantly increased N2 permeation, resulting in selectivity decline. Above results verify the feasibility of transforming reverse osmosis membranes into CO2 separation membranes, which provides a reliable basis for industrial scale-up practice.

基金项目:
浙江省“领雁计划”研发项目(2022C03048)

作者简介:
陈方正(1974-), 男,浙江嵊州人,高级工程师,主要从事生物质燃气领域技术研究,E-mail: 453724668@qq.com

参考文献:
 [1] 胡道成, 王睿, 赵瑞,等. 二氧化碳捕集技术及适用场景分析[J]. 发电技术, 2023, 44(4):502-513.
[2] 牟瑛, 张贤明, 陈欢,等. 我国多年来温室气体排放情况及对策研究[J]. 河南科技, 2021, 40(9):128-130.
[3] Babu D J, He G, Hao J, et al. Restricting lattice flexibility in polycrystalline metal‐organic framework membranes for carbon capture[J]. Adv Mater, 2019, 31(28):1900855.
[4] Ji Y, Zhang M, Guan K, et al. High-performance CO2 capture through polymer-based ultrathin membranes[J]. Adv Funct Mater, 2019, 29(33):1900735.
[5] Song C, Liu Q, Deng S, et al. Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges[J]. Renew Sust Energ Rev, 2019, 101:265-278.
[6] Kadirkhan F, Goh P S, Ismail A F, et al. Recent advances of polymeric membranes in tackling plasticization and aging for practical industrial CO2/CH4 applications-a review[J]. Membranes, 2022, 12(1):12010071.
[7] Ward W J, Robb W L. Carbon dioxide-oxygen separation: facilitated transport of carbon dioxide across a liquid film[J]. Science, 1967, 156(3781):1481-1484.
[8] He X, Lindbråthen A, Kim T J, et al. Pilot testing on fixed-site-carrier membranes for CO2 capture from flue gas[J]. Int J Greenh Gas Con, 2017, 64:323-332.
[9] Deng L, Kim T J, Hägg M B. PVA/PVAm blend FSC membrane for CO2-capture[J]. Desalination, 2006, 199(1-3):523-524.
[10] Sun C, Dutta P K, Ho W S W. SO2 interference on separation performance of amine-containing facilitated transport membranes for CO2 capture from flue gas[J]. J Membr Sci, 2017, 534:33-45.
[11] 许家友. CO2膜分离过程的模拟及优化[D]. 天津: 天津大学, 2019.
[12] Francisco G J, Chakma A, Feng X. Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2 separation[J]. J Membr  Sci, 2007, 303(1-2):54-63.
[13] Matsuyama H, Terada A, Nakagawara T, et al. Facilitated transport of CO2 through polyethylenimine/ poly(vinyl alcohol) blend membrane[J]. J Membr Sci, 1999, 163(2):221-227.
[14] Yun H J, Hong H, Lee J, et al. Chemical and structural properties of polyethyleneimine film coated on a SiO2 substrate in different concentrations[J]. Mater Trans, 2017, 55(5):801-805.
[15] Ma C, Wang M, Wang Z, et al. Recent progress on thin film composite membranes for CO2 separation[J]. J CO2 Util, 2020, 42:101296.
[16] Kim T J, Vrålstad H, Sandru M, et al. Separation performance of PVAm composite membrane for CO2 capture at various Ph levels[J]. J Membr Sci, 2013, 428:218-224. 
[17] 赵文瑛, 王丽香, 李振山,等. 不同胺基CO2固体吸收剂的热稳定性能[J]. 化工学报, 2012, 63(10):3304-3309.
[18] Choi W, Park J, Kim C, et al. Structural effects of amine polymers on stability and energy efficiency of adsorbents in post-combustion CO2 capture[J]. Chem Eng J, 2020, 408:127289.
[19] Tang C Y, Kwon Y N, Leckie J O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers[J]. Desalination, 2009, 242(1-3):168-182.
[20] Singh P S, Rao A P, Ray P, et al. Techniques for characterization of polyamide thin film composite membranes[J]. Desalination, 2011, 282:78-86.
[21] Liao J, Wang Z, Wang M, et al. Adjusting carrier microenvironment in CO2 separation fixed carrier membrane[J]. J Membr Sci, 2016, 511:9-19.
[22] Cihanoglu A, Altinkaya S A. A facile approach for preparation of positively charged nanofiltration membranes by in-situ crosslinking between polyamide-imide and polyethylenimine[J]. Sep Purif Technol, 2018, 207:353-362.
[23] Xu J, Wang Z, Wang J, et al. Positively charged aromatic polyamide reverse osmosis membrane with high anti-fouling property prepared by polyethylenimine grafting[J]. Desalination, 2015, 365:398-406.
[24] Hamouda S B, Nguyen Q T, Langevin D, et al. Poly(vinylalcohol)/poly(ethyleneglycol)/poly(ethyleneimine) blend membranes-structure and CO2 facilitated transport[J]. C R Chim, 2010, 13(3):372-379.
[25] 杨东晓. 分离CO2固定载体膜传质机理及其膜过程模拟和优化研究[D]. 天津: 天津大学, 2009.
[26] 张晨昕. 分离CO2膜传质机理及其过程模拟研究[D]. 天津: 天津大学, 2014.
[27] Chen T Y, Ho W S W. Effects of pressure and temperature on CO2 facilitation of amino acid salt-containing membranes for post-combustion carbon capture[J]. J Membr Sci, 2024, 689:122166.
[28] 蒋国梁, 冯献社, 朱葆琳. 气体膜分离过程中浓差极化的影响[J]. 膜科学与技术, 1989, 9(2):23-28.
[29] 王志, 甄寒菲, 王世昌,等. 膜过程中防治膜污染强化渗透通量技术进展(Ⅰ)操作策略[J]. 膜科学与技术, 1999, 19(1):3-7+13.
[30] 顾晓亮. 二氧化碳/甲烷混合气的膜分离性能研究[D]. 北京: 北京化工大学, 2011.
[31] Sandru M, Haukebo S H, Hägg M B. Composite hollow fiber membranes for CO2 capture[J]. J Membrane Sci, 2010, 346(1):172-186.
[32] Zhao Y, Ho W S W. Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transport[J]. J Membr Sci, 2012, 415-416:132-138.
[33] Xu R, Wang Z, Wang M, et al. High nanoparticles loadings mixed matrix membranes via chemical bridging-crosslinking for CO2 separation[J]. J Membr Sci, 2019, 573:455-464.
[34] Jing S, Zhuan Y, Xue T Z, et al. CO2 separation membranes with high permeability and CO2/N2 selectivity prepared by electrostatic self-assembly of polyethylenimine on reverse osmosis membranes[J]. RSC Adv, 2017, 7(24):14678-14687.
[35] He Y, Wang Z, Dong S, et al. Polymeric composite membrane fabricated by 2-aminoterephthalic acid chemically cross-linked polyvinylamine for CO2 separation under high temperature[J]. J Membr Sci, 2016, 518:60-71.
[36] Prasad B, Mandal B. CO2 separation performance by chitosan/tetraethylenepentamine/poly(ether sulfone) composite membrane[J]. J Appl Polym Sci, 2017, 134(34):45206.
[37] Yu M, Dai Y, Yang K, et al. TEA incorporated CS blend composite membrane for high CO2 separation performance[J]. RSC Adv, 2016, 6(32):27016-27019.
[38] Wang Y, Li L, Zhang X, et al. Polyvinylamine/amorphous metakaolin mixed-matrix composite membranes with facilitated transport carriers for highly efficient CO2/N2 separation[J]. J Membr Sci, 2020, 599:117828.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号