构建界面兼容的Por-POF/PIM-1混合基质膜用于CO2/N2高效分离
作者:王晓楠,倪飞,李海壮,沈舒欣,孙腾腾,王康军,于广莉
单位: 沈阳化工大学 化学工程学院,沈阳 110142
关键词: 混合基质膜;Por-POF;界面相容性;CO2分离
DOI号: 10.16159/j.cnki.issn1007-8924.2024.04.019
分类号: TQ050.4+3
出版年,卷(期):页码: 2024,44(4):170-177

摘要:
混合基质膜(MMMs)在实现优异的CO2分离方面潜力很大,但其性能往往受到填料与基质之间界面兼容性差的限制。本研究将卟啉基多孔有机框架(Por-POF)分散在可溶性的固有微孔聚合物(PIM-1)中,制备了一系列高渗透选择性MMMs。Por-POF的纯有机属性增强其与纯有机聚合物基质的相互作用,从而制备界面相容性良好的膜材料。多孔的Por-POF可以增加膜的自由体积分数,提高了薄膜的渗透通量。此外,Por-POF孔壁上富集了大量氮,对CO2具有较强的吸附作用,从而提高CO2/N2选择性。气体渗透实验表明,与纯PIM-1膜相比,Por-POF/PIM-1膜的CO2渗透通量和CO2/N2选择性分别提高了157%和64%。本研究为合理设计和构建高性能的分离膜提供了一种独特的思路。
 

Mixed matrix membranes (MMMs) have great potential to achieve excellent CO2 separation, while their performances are often limited by poor interfacial compatibility between fillers and matrix. Here, a rational design and facile construction of highly permeable MMMs is presented by dispersing porphyrin based porous organic framework (Por-POF) within solution-processable polymer of intrinsic microporosity (PIM-1). The pure organic nature of Por-POF enhances its interaction with the pure organic polymer matrixes, leading to good interfacial compatibility in the resultant MMMs. Porous Por-POF fillers can increase the membrane fractional free volume that enhances the membrane gas permeability. Besides, Por-POF exhibits enriched nitrogen in its pore walls that has a strong adsorption effect on CO2, thus achieving higher CO2/N2 selectivity. Gas permeations demonstrate that CO2 permeability and CO2/N2 selectivity for Por-POF/PIM-1 increased by 157% and 64%, respectively, compared with pure PIM-1. This study will further bring unique insights for the rational design and construction of high performances separation membranes. 
 

基金项目:
大学生创新创业训练项目(202210149011);辽宁省博士启动基金项目(2022-BS-213);国家自然科学基金项目(22208224)

作者简介:
王晓楠(2002-),女,辽宁大连人,本科生,主要研究方向为二氧化碳分离膜材料制备,E-mail:aurora_xiaonanwang@163.com

参考文献:
[1]Wang C, Wu J, Cheng P F, et al. Nanocomposite polymer blend membrane molecularly re-engineered with 2D metal-organic framework nanosheets for efficient membrane CO2 capture[J]. J Membr Sci, 2023, 685:121950.
[2]任小峰, 王永洪, 张新儒,等. 先进CO2分离膜中纳米通道的构建及调控进展[J]. 现代化工, 2023, 43(5):31-35.
[3]Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532:435-437.
[4]Wang H J, Wang M D, Liang X, et al. Organic molecular sieve membranes for chemical separations[J]. Chem Soc Rev, 2021, 50:5468.
[5]李成帅, 舒震, 史德青,等. 基于MOFs的混合基质膜在气体分离方面的研究进展[J]. 现代化工, 2021, 41(11):63-66.
[6]Fan F X, Sun Y C, Zhao Q Z, et al. Fluorinated-cardo-based Co-polyimide membranes with enhanced selectivity for CO2 separation[J]. Sep Purif Technol, 2023, 324:124511.
[7]Robeson L M. The upper bound revisited[J]. J Membr Sci, 2008, 320:390-400.
[8]Dariush B, Nazila E, Mahdieh A. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications:A review[J]. J Ind Eng Chem, 2013, 19:375-393.
[9]Shen J, Zhang M C, Liu G P, et al. Size effects of graphene oxide on mixed matrix membranes for CO2 separation[J]. AIChE J, 2016, 62(8):2843-2852.
[10]Hu  C C, Cheng P S, Chou S C, et al. Separation behavior of amorphous amino-modified silica nanoparticle/polyimide mixed matrix membranes for gas separation[J]. J Membr Sci, 2020, 595:117542.
[11]Xin Q P, Gao Y J, Wu X Y, et al. Incorporating one-dimensional aminated titania nanotubes into sulfonated poly(ether ether ketone)membrane to construct CO2-facilitated transport pathways for enhanced CO2 separation[J]. J Membr Sci, 2015, 488:13-29.
[12]Yu G L, Zou X Q, Sun L, et al. Constructing connected paths between UiO-66 and PIM-1 to improve membrane CO2 separation with crystal-like gas selectivity[J]. Adv Mater, 2019, 31(15):1806853.
[13]魏以旺, 孙玉绣, 郭翔宇,等. 烧结ZIF-300/PSU6010混合基质膜用于高效CO2分离[J]. 膜科学与技术, 2023, 43(3):30-36.
[14]张逸娟, 宋春风, 连少翰,等. 功能化MOF基混合基质膜微环境调控策略[J]. 膜科学与技术, 2023, 43(1):165-173.
[15]Yu G L, Li Y Q,Wang Z Y, et al. Mixed matrix membranes derived from nanoscale porous organic frameworks for permeable and selective CO2 separation[J]. J Membr Sci, 2019, 591:117343.
[16]Ma C H, Li X L,  Zhang J, et al. Pyrazine-fused porous graphitic framework-based mixed matrix membranes for enhanced gas separations[J]. ACS Appl Mater Interfaces, 2020, 12:16922-16929.
[17]Xin Q P, Zhang X H, Shao W, et al. COF-based MMMs with light-responsive properties generating unexpected surface segregation for efficient SO2/N2 separation[J]. J Membr Sci, 2023, 665:121109.
[18]Dai G L, Zhang Q Q, Xiong S H, et al. Building interfacial compatible PIM-1-based mixed-matrix membranes with β-ketoenamine-linked COF fillers for effective CO2/N2 separation[J]. J Membr Sci, 2023, 676:121561.
[19]Peng D L, Duan S F,  Feng X Q, et al. Mixed-matrix membranes containing zero-dimension porphyrin-based complex for propylene/propane separation[J]. Sep Purif Technol, 2023, 314:123656.
[20]Federico B,Elsa L, Geo P, et al. Hyper-cross-linked polymers with sulfur-based functionalities for the prevention of aging effects in PIM-1 mixed matrix membranes[J]. ACS Appl Polym Mater, 2023, 5:4011-4018.
[21]王绍宇, 马翰泽, 吴洪,等. 有机框架膜在气体分离中的研究进展[J]. 化工学报, 2021, 72(7):3488-3510.
[22]Wu D Y, Hou R J, Yi C H, et al. Enhancing polymide-based mixed matrix membranes performance for CO2 separation containing PAF-1 and p-DCX[J]. Sep Purif Technol, 2021, 268:118677.
[23]Laura R J, Mar L G, Marta I, et al. Effect of porous organic polymers in gas separation properties of polycarbonate based mixed matrix membranes[J]. J Membr Sci, 2021, 619:118795.
[24]刘威, 徐之薇, 王睿,等. 多孔有机框架材料在真菌毒素分离富集与检测中的研究进展[J]. 色谱, 2023, 41(10):891-900.
[25]Zhang S H, Liu J L, Jiang S S, et al. Mixed monomer derived porous aromatic frameworks with superior membrane performance for CO2 capture[J]. J Membr Sci, 2021, 632:119372.
[26]Biswal B P, Chaudhari H D, Banerjee R, et al. Chemically stable covalent organic framework(COF)-polybenzimidazole hybrid membranes:Enhanced gas separation through pore modulation[J]. Chem Eur J, 2016, 22:4695-4699.
[27]Gao X, Zou X ,Q Ma H P, et al. Highly selective and permeable porous organic framework membrane for CO2 capture[J]. Adv Mater, 2014, 26:3644-3648.
[28]Zhang S H, Yang Q, Wang C, et al. Porous organic frameworks:Advanced materials in analytical chemistry[J]. Adv Sci, 2018, 5(12):1801116.
[29]Yi S L, Ghanem B, Liu Y, et al. Ultraselective glassy polymer membranes with unprecedented performance for energy-efficient sour gas separation[J]. Sci Adv, 2019, 5: eaaw5459. 
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号