基于多巴胺亲水改性的聚丙烯中空纤维膜及油水分离性能研究 |
作者:李玉懂1, 张晶1, 李妍妍1, 肖长发2, 刘振1 |
单位: 天津工业大学, 省部共建分离膜与膜过程国家重点实验室 |
关键词: 聚丙烯中空纤维膜; 亲水性; 多巴胺; 防污; 油水分离 |
DOI号: 10.16159/j.cnki.issn1007-8924.2024.05.003 |
分类号: TQ028 |
出版年,卷(期):页码: 2024,44(5):20-31 |
摘要: |
基于多巴胺(DA)氧化自聚合机理,通过3-(2,3-环氧丙氧)丙基三甲氧基硅烷(KH560)上的环氧基与聚乙烯亚胺(PEI)上的伯胺发生开环反应,使两者交联并涂覆于聚丙烯中空纤维膜(PPHFM)表面,然后DA在弱碱性环境下被氧化成醌基与PEI的氨基发生迈克尔加成或席夫碱反应,使DA进一步与PEI交联,进而涂覆在膜表面.通过ATR-FTIR、XPS、SEM和AFM对膜表面化学组成和表面形貌进行表征,还对改性膜进行亲水性和油水分离性能测试.结果表明,改性膜的纯水通量从原膜的(124.8±6.3) kg/(m2·h)提高到(363±8.1) kg/(m2·h).对不同种类的水包油乳液的分离效率均达96%以上,通量恢复率均高于86%,说明改性膜PPHFMKH560/PEIPDA具有较好的渗透性、抗油污染性能和重复使用性能.此外,改性膜在酸性、弱碱性和高浓度盐溶液环境下均表现出良好的化学稳定性,有利于高效地处理复杂成分的含油废水,具有广阔的应用前景. |
Based on the oxidative selfpolymerization mechanism of dopamine (DA), the two were crosslinked and coated on the surface of polypropylene hollow fibre membrane (PPHFM) through a ringopening reaction between the epoxy group on 3-(2,3-epoxypropyloxy)propyltrimethoxysilane (KH560) and a primary amine on polyethyleneimine (PEI), and then dopamine(DA) is oxidized to quinone groups in a weakly alkaline environment and reacts with the amino group of the PEI in a Michael addition or Schiff base reaction, which further cross-links the DA with the PEI, which is then coated on the film surface.The membrane surface chemical composition and surface morphology were characterised by ATR-FTIR, XPS, SEM and AFM, and the hydrophilicity and oilwater separation properties of the modified membrane were also tested. The results showed that the pure water flux of the modified membrane was increased from (124.8±6.3) kg/(m2·h) of the original membrane to (363±8.1) kg/(m2·h). The separation efficiencies for different types of oilinwater emulsions were all above 96%, and the flux recovery rates were all higher than 86%, indicating that the PHFMKH560/PEIPDA membranes have good permeability, resistance to oil contamination and reusability. In addition, the modified membranes showed good chemical stability in acidic, weakly alkaline and high concentration salt solution environments, which is conducive to the efficient treatment of oily wastewater with complex composition and has broad application prospects. |
基金项目: |
国家自然科学基金项目(52173038) |
作者简介: |
李玉懂(1996-),男,河南商丘人,硕士生,研究方向为中空纤维膜的制备及油水分离性能研究.*通讯作者,E-mail:poly1122@sina.com |
参考文献: |
[1]Manikandan S, Subbaiya R, Saravanan M, et al. A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes\[J\]. Chemosphere, 2022, 289: 132867. \[2\]Naggea J, Miller R K. A comparative case study of multistakeholder responses following oil spills in Pointe d’Esny, Mauritius, and Huntington Beach, California\[J\]. Ecol Soc, 2023, 28(1): 280124. \[3\]Li Y S, Yan S, Li Z W, et al. Liquidlike nanofluid mediated modification of solar-assisted sponges for highly efficient cleanup and recycling of viscous crude oil spills\[J\]. J Mater Chem A, 2022, 10(30): 16224-16235. \[4\]Yang X J, Sun H W, Li G Y, et al. Fouling of TiO2 induced by natural organic matters during photocatalytic water treatment: Mechanisms and regeneration strategy\[J\]. Appl Catal BEnviron, 2021, 294: 120252. \[5\]Ismail N H, Salleh W N W, Ismail A F, et al. Hydrophilic polymer-based membrane for oily wastewater treatment: A review \[J\]. Sep Purif Technol, 2020, 233: 116007. \[6\]Ali N, Bilal M, Khan A, et al. Design, engineering and analytical perspectives of membrane materials with smart surfaces for efficient oil/water separation\[J\]. TracTrends Anal Chem, 2020, 127: 115902. \[7\]Rasouli S, Rezaei N, Hamedi H, et al. Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review \[J\]. Mater Des, 2021, 204:109599. \[8\]Krebs T, Schron C, Boom R M. Separation kinetics of an oil-in-water emulsion under enhanced gravity\[J\]. Chem Eng Sci, 2012, 71: 118-125. \[9\]Su R L, Li S M, Wu W L, et al. Recent progress in electrospun nanofibrous membranes for oil/water separation\[J\]. Sep Purif Technol, 2021, 256:117790. \[10\]Zhang J, Luo D W, Yao L H, et al. One-step preparation of a superhydrophilic membrane with excellent anti-oil fouling property for simultaneous separation of emulsified oils and dyes in complex wastewater\[J\]. J Mater Sci, 2023, 58:14627-14644. \[11\]Li S L, Chang G L, Huang Y Z, et al. 2,2′Biphenolbased ultrathin microporous nanofilms for highly efficient molecular sieving separation\[J\]. Angew ChemInt Edit, 2022, 61(46): 12816. \[12\]Hu Y Q, Li H N, Xu Z K. Janus hollow fiber membranes with functionalized outer surfaces for continuous demulsification and separation of oilinwater emulsions\[J\]. J Membr Sci, 2022, 648: 120388. \[13\]Li H N, Yang J, Xu Z K. Hollow fiber membranes with janus surfaces for continuous deemulsification and separation of oil-in-water emulsions\[J\]. J Membr Sci, 2020, 602:117964. \[14\]Tanudjaja H J, Hejase C A, Tarabara V V, et al. Membrane-based separation for oily wastewater: A practical perspective\[J\]. Water Res, 2019, 156:347-365. \[15\]Baig N, Salhi B, Sajid M, et al. Recent progress in microfiltration/ultrafiltration membranes for separation of oil and water emulsions\[J\]. Chem Rec, 2022, 22(7): e202100320. \[16\]Yan J J, Xiao C F, Wang C. Robust preparation of braid-reinforced hollow fiber membrane covered by PVDF nanofibers and PVDF/SiO2 micro/nanospheres for highly efficient emulsion separation\[J\]. Sep Purif Technol, 2022, 298: 121593. \[17\]Wang L, Wang N X, Li J, et al. Layer-by-layer selfassembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance\[J\]. Sep Purif Technol, 2016, 160: 123-131. \[18\]Ma N, Cao J J, Li H Y, et al. Surface grafting of zwitterionic and PEGylated crosslinked polymers toward PVDF membranes with ultralow protein adsorption \[J\]. Polymer, 2019, 167: 1-12. \[19\]Deng Y, Zhang G W, Bai R B, et al. Fabrication of superhydrophilic and underwater superoleophobic membranes via an in situ crosslinking blend strategy for highly efficient oil/water emulsion separation\[J\]. J Membr Sci, 2019, 569: 60-70. \[20\]Zhu Y, Wang K, Lu J H, et al. Teamed boronate affinity-functionalized Zn-MOF/PANderived molecularly imprinted hollow carbon electrospinning nanofibers for selective adsorption of shikimic acid\[J\]. ACS Appl Mater Interfaces, 2022, 14(23): 27294-27308. \[21\]Wang K P, Hou D Y, Wang J, et al. Hydrophilic surface coating on hydrophobic PTFE membrane for robust antioilfouling membrane distillation\[J\]. Appl Surf Sci, 2018, 450: 57-65. \[22\]Yu Y F, Zhang L, Li X D, et al. Multifunctionalization of PTFE membrane surface for biofouling resistance and oil/water separation performance improvement\[J\]. J Environ Chem Eng, 2023, 11(1): 109158. \[23\]Gao N W, Fan W, Xu Z K. Ceramic membrane with protein-resistant surface via dopamine/diglycolamine codeposition\[J\]. Sep Purif Technol, 2020, 234: 116135. \[24\]Cheng W, Zeng X W, Chen H Z, et al. Versatile polydopamine platforms: Synthesis and promising applications for surface modification and advanced nanomedicine\[J\]. ACS Nano, 2019, 13(8): 8537-8565. \[25\]Yan Z, Zhou Z P, Zhang Z W, et al. Onepot fabrication of superhydrophilic/underwater superoleophobic membrane based on mussel-inspired chemistry for highefficiency oilwater separation\[J\]. Nano, 2022, 17(05): 2250039. \[26\]Luan W, Nie C Y, Chen X F, et al. Effective construction of anti-fouling zwitterion-functionalized ceramic membranes for separation of oil-inwater emulsion based on PDA/PEI codeposition\[J\]. J Environ Chem Eng, 2022, 10(5): 108396. \[27\]Xu Y L, Zhu Y, Song C Y, et al. Bioinspired SiO2/PDA/PTFE membrane with high corrosion-resistance for longterm efficient oil/water separation\[J\]. Polymer, 2023, 281: 126143. \[28\]Chew N G P, Zhao S S, Malde C, et al. Superoleophobic surface modification for robust membrane distillation performance\[J\]. J Membr Sci, 2017, 541: 162-173. \[29\]Wang Z X, Lau C H, Zhang N Q, et al. Mussel-inspired tailoring of membrane wettability for harsh water treatment\[J\]. J Mater Chem A, 2015, 3(6): 2650-2657. \[30\]Li C C, He Z H, Wang F, et al. Laccase-catalyzed homo-polymer of GAL and cross-linking with PEI to enhance hydrophilicity and antifouling property of PTFE flat membrane\[J\]. Prog Org Coat, 2019, 132:429-439. \[31\]Jin J B, Zhang K Z, Du X L, et al. Synthesis of polydopamine-mediated PP hollow fibrous membranes with good hydrophilicity and antifouling properties\[J\]. J Appl Polym Sci, 2017, 134(5): 44430. \[32\]Liu C, Wu L L, Zhang C C, et al. Surface hydrophilic modification of PVDF membranes by trace amounts of tannin and polyethyleneimine\[J\]. Appl Surf Sci, 2018, 457: 695-704. \[33\]Zou D, Kim H W, Jeon S M, et al. Robust PVDF/PSF hollow-fiber membranes modified with inorganic TiO2 particles for enhanced oil-water separation\[J\]. J Membr Sci, 2022, 652: 120470. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号