丙烯酸酯类两亲性共聚物超滤膜的制备及性能
作者:蒋亚妮1, 赵自豪1, 苏茜薇1, 朱礼恒1, 田华1, 薛云云2, 杜斌12, 钱佳成2, 王建宇2, 凌君1, 朱宝库12
单位: 1. 浙江大学 高分子科学与工程学系, 膜与水处理技术教育部工程研究中心 2. 浙江大学 绍兴研究院大健康材料中心
关键词: 聚丙烯酸酯; 两亲性共聚物; 羧基; 超滤膜; 抗污染
DOI号: 10.16159/j.cnki.issn1007-8924.2024.05.004
分类号: TQ051.893
出版年,卷(期):页码: 2024,44(5):32-39

摘要:
 为探索环保型高性能水处理超滤膜材料,设计、合成了仅含碳、氢、氧元素的丙烯酸酯类两亲性共聚物-聚(甲基丙烯酸甲酯-co-丙烯酸丁酯-co-甲基丙烯酸)[P(MMA-co-BA-co-MAA), 简写为PMBM\],研究了PMBM超滤膜的制备、结构和性能.研究发现,通过非溶剂诱导相转化法(NIPS)制备的PMBM超滤膜具有良好的亲水性和抗污染性,不同羧基含量的PMBM膜在不同 pH下的性能差别较大.其中MAA质量分数为11% 的PMBM11膜在中性条件下纯水通量为1 310 L/(m2·h·MPa),对BSA的截留率为98%,BSA污染后的通量恢复率(FRR)达到79%.
 
 
 
In order to develop an environmentally friendly and highperformance water treatment ultrafiltration membrane materials, the amphiphilic copolymers, poly (methyl methacrylate-co-butyl acrylate-co-methacrylic acid) (P(MMA-co-BA-co-MAA), PMBM), only containing only C, H and O elements were designed and synthesized in this research. The ultrafiltration membranes of PMBMs were prepared via typical non-solvent-induced phase separation (NIPS) process. It is found that suspension polymerization is an effective method to synthesize PMBMs, and the PMBMs can be prepared into ultrafiltration membrane with good pore structure. The carboxyl group in PMBMs can endow the membranes with good hydrophilicity and antifouling property. The performance of PMBM membrane with different carboxyl group content can vary obviously at different pH condition. The membrane of PMBM11 containing 11% (mass fraction) MAA performed a pure water flux of 1 310 L/(m2·h·MPa), a BSA retention rate of 98%, and a flux recovery rate (FRR) of 79% after BSA contamination. 
 

基金项目:
浙江省自然科学基金项目(LD22E030006); 浙江大学基本科研业务费专项(226-2023-00057, 26-2023-00074, 2021FZZX003-02-09)

作者简介:
蒋亚妮(1998-),女,浙江台州人,硕士生,主要从事聚合物微孔分离膜材料研究.*通讯作者,E-mail:zhubk@zju.edu.cn

参考文献:
 
 
[1]Fane A G, Wang R, Hu M X. Synthetic membranes for water purification: Status and future\[J\]. Angew Chem Int Ed, 2015, 54(11): 3368-3386.
\[2\]贾旭莹,Matindi N C, 崔振宇, 等. 反应控制相转化法制备PVDF/SMAgPEG共混超滤膜及性能研究\[J\]. 膜科学与技术, 2023, 43(5): 74-82.
\[3\]Chen X Q, Li T Y, Yan L L et al. Biodegradable electrospinning superhydrophilic nanofiber membranes for ultrafast oilwater separation\[J\]. Sci Adv, 2023, 9(34): eadh8195.
\[4\]Xie W, Li T, Tiraferri A, et al. Toward the next generation of sustainable membranes from green chemistry principles\[J\]. ACS Sustainable Chem Eng, 2021, 9(1): 50-75.
\[5\]Issaoui M, Jellali S, Zorpas A A, et al. Membrane technology for sustainable water resources management: Challenges and future projections\[J\]. Sustain Chem Pharm, 2022, 25: 100590.
\[6\]Yang B, Yang X, Liu B, et al. PVDF blended PVDFgPMAA pHresponsive membrane: Effect of additives and solvents on membrane properties and performance\[J\]. J Membr Sci, 2017, 541: 558-566.
\[7\]Fan K, Su J, Zeng Z, et al. Antifouling and protein separation of PVDFgPMAA@MnO2 filtration membrane with insitu grown MnO2 nanorods\[J\]. Chemosphere, 2022, 286: 131756.
\[8\]Zhang R, Liu Y, He M, et al. Antifouling membranes for sustainable water purification: Strategies and mechanisms\[J\]. Chem Soc Rev, 2016, 45(21): 5888-5924.
\[9\]Liu Q, Li Y, Wang H, et al. Phenolphthalein polyethersulfone bearing carboxyl groups: Synthesis and its separationmembrane applications\[J\]. High Perform Polym, 2021, 33(3): 245-254.
\[10\]Wang N, Wang T, Hu Y. Tailoring membrane surface properties and ultrafiltration performances via the selfassembly of polyethylene glycolblockpolysulfoneblockpolyethylene glycol block copolymer upon thermal and solvent annealing\[J\]. ACS Appl Mater, 2017, 9(36): 31018-31030.
\[11\]Pei Z C, Pei Y X, Wang Q R. Acrylonitrilemaleic anhydride copolymer membranes with different molecular weights\[J\]. J Appl Polym, 2002, 85(12): 2521-2527.
\[12\]Zheng J, Wang L, Hu Y, et al. Toughening effect of comonomer on acrylic denture base resin prepared via suspension copolymerization\[J\]. J Appl Polym, 2012, 123(4): 2406-2413.
\[13\]Fan K, Huang J, Yang H, et al. pH and thermal-dependent ultrafiltration membranes prepared from poly (methacrylic acid) grafted onto polyethersulfone synthesized by simultaneous irradiation in homogenous phase\[J\]. J Membr Sci, 2017, 543: 335-341.
\[14\]Mei L, Xie R, Yang C, et al. pHresponsive Caalginatebased capsule membranes with grafted poly(methacrylic acid) brushes for controllable enzyme reaction\[J\]. Chem Eng J, 2013, 232: 573-581.
\[15\]Sun X, Hu K, Wang K, et al. Hydrophilic surface modification of poly(methyl methacrylate)/poly(methyl methacrylatecoacrylic acid) composite film by surface activation\[J\]. Macromol Chem Phys, 2023, 225: 2300312.
\[16\]Montaudo M S, Montaudo G. Bivariate distribution in PMMA/PBA copolymers by combined SEC/NMR and SEC/MALDI measurements\[J\]. Macromolecules, 1999, 32(21): 7015-7022.
\[17\]Lyu J, Muhammad N, Lan J, et al. Pore structure regulation and continuous preparation with VNIPS process of membranes for bioseparation\[J\]. Sep Purif Technol, 2024, 334: 125936.
\[18\]Huang C F, Chang F C. Comparison of hydrogen bonding interaction between PMMA/PMAA blends and PMMAcoPMAA copolymers\[J\]. Polymer, 2003, 44(10): 2965-2974.
\[19\]Kumar R, Ismail A F. Fouling control on microfiltration/ultrafiltration membranes: Effects of morphology, hydrophilicity, and charge\[J\]. J Appl Polym, 2015, 132(21):42042.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号