一种有机杂化硅膜分子模型的重构研究
作者:张涛, 靳栋梁, 吴楠桦, 钟璟
单位: 常州大学 石油化工学院,江苏省绿色催化材料与技术重点实验室
关键词: 有机杂化硅膜; 分子动力学; 化学结构; 反应力场; 孔隙拓扑
DOI号: 10.16159/j.cnki.issn1007-8924.2024.05.005
分类号: O64
出版年,卷(期):页码: 2024,44(5):40-46

摘要:
BTESA有机杂化硅膜具有复杂的无定形结构,广泛应用于气体分离、有机溶剂处理和能源存储等领域,但目前仍缺乏成熟的分子级表征模型.本文结合分子动力学模拟和反应力场,在纳米尺度上构建BTESA有机杂化硅膜的分子模型,并采用X射线衍射、径向分布函数、孔径分布探究该分子模型的化学结构和孔隙拓扑.结果表明,采用分子模拟构建的BTESA样品的衍射图样与实验数据一致,准确地揭示了BTESA有机杂化硅膜的化学结构与孔隙拓扑.研究结果为BTESA有机杂化硅膜及其他有机杂化硅膜提供了一种成熟的纳米尺度模型构建方法和孔隙拓扑结构分析技术.
 
?BTESA organosilicon membranes have complex amorphous structures and are widely used in gas separation, organic solvent treatment and energy storage, but there is still a lack of mature molecularlevel characterisation models. In this paper, a molecular model of BTESA organosilicon membrane is constructed on the nanoscale by combining molecular dynamics simulation and reaction force field, and X-ray diffraction, radial distribution function, and pore size distribution are used to probe the chemical structure and pore topology of this molecular model. The results show that the diffraction patterns of the BTESA samples constructed using molecular modelling are consistent with the experimental data and accurately reveal the chemical structure and pore topology of the BTESA organosilicon membrane. The results provide a well-established nanoscale model construction method and pore topology analysis technique for BTESA organosilicon membranes and other organosilicon membranes. 
 

基金项目:
常州市科技项目(CZ20220033)

作者简介:
张涛(1999-),男,江苏淮安人,硕士,研究方向为分子模拟.*通讯作者,E-mail: zjwyz@cczu.edu.cn

参考文献:
 [1]Moriyama N, Kawano Y, Wang Q, et al. Pervaporation via siliconbased membranes: Correlation and prediction of performance in pervaporation and gas permeation\[J\]. AIChE J, 2021, 67(7):e17223.
\[2\]Nakahiro K, Yu L, Nagasawa H, et al. Pore structure controllability and CO2 permeation properties of silicaderived membranes with a dualnetwork structure\[J\]. Ind Eng Chem Res, 2021, 60(23):8527-8537.
\[3\]Dong G, Zhang Y, Sato T, et al. Reverse osmosis and pervaporation of organic liquids using organosilica membranes: Performance analysis and predictions\[J\]. AIChE J, 2022, 68:e17585.
\[4\]Dong G, Nagasawa H, Kanezashi M, et al. Experimental study and modeling of organic solvent reverse osmosis separations through organosilica membranes\[J\]. AIChE J, 2020, 66(9):e16283.
\[5\]Jiang Q, Guo M. Network structure engineering of organosilica membranes for enhanced CO2 capture performance \[J\]. Membranes, 2022, 12(5):470.
\[6\]Guo M, Kanezashi M, Nagasawa H, et al. Pore subnanoenvironment engineering of organosilica membranes for highly selective propylene/propane separation\[J\]. J Membr Sci, 2020, 603:117999.
\[7\]Ma Y, Chew J W. Investigation of membrane fouling phenomenon using molecular dynamics simulations: A review\[J\]. J Membr Sci, 2022, 661:120874.
\[8\]Lee J M, Han H, Jin S, et al. A review on recent progress in the aspect of stability of oxygen reduction electrocatalysts for protonexchange membrane fuel cell: Quantum mechanics and experimental approaches\[J\]. Energy Technol, 2019, 7(9):1900312.
\[9\]Tomohisa Y, Toshinori T, Asaeda M. Molecular dynamics study of gas permeation through amorphous silica network and interparticle pores on microporous silica membranes\[J\]. Mol Phys, 2004, 102:191-202.
\[10\]Chang K S, Yoshioka T, Kanezashi M, et al. Molecular simulation of micro-structures and gas diffusion behavior of organicinorganic hybrid amorphous silica membranes\[J\]. J Membr Sci, 2011, 381:90-101.
\[11\]Takashi S, Tomohisa Y, Hiroki N, et al. Molecular dynamics simulation study on characterization of bis(triethoxysilyl)ethane and bis(triethoxysilyl)ethylene derived silicabased membranes\[J\]. Desalin Water Treat, 2013, 51:5248-5253.
\[12\]Wang Y, Shi Y, Sun Q, et al. Development of a transferable reaxFF parameter set for carbon and siliconbased solid systems\[J\]. J Phys Chem C, 2020, 124:10007-10015.
\[13\]Ren X, Tsuru T. Organosilicabased membranes in gas and liquidphase separation\[J\]. Membranes, 2019, 9:107.
\[14\]Kanezashi M, Yoneda Y, Nagasawa H, et al. Gas permeation properties for organosilica membranes with different Si/C ratios and evaluation of microporous structures\[J\]. AIChE J, 2017, 63:4491-4498.
\[15\]Nagasawa H, Minamizawa T, Kanezashi M, et al. Microporous organosilica membranes for gas separation prepared via PECVD using different O/Si ratio precursors\[J\]. J Membr Sci, 2015, 489:11-19.
\[16\]Van D L A, Roualdes S, Berjoan R, et al. Mass density determination of thin organosilicon films by Xray reflectometry\[J\]. Appl Surf Sci, 2001, 173:115-121.
\[17\]Chenoweth K, Van D, Adri C T, et al. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation\[J\]. J Phys Chem A, 2008, 112:1040-1053.
\[18\]Chen B, Diao Z J, Zhao Y L, et al. A ReaxFF molecular dynamics (MD) simulation for the hydrogenation reaction with coal related model compounds\[J\]. Fuel, 2015, 154:114-122.
\[19\]Rappe A K, Goddard  W A. Charge equilibration for molecular dynamics simulations\[J\]. J Phys Chem, 1991, 95:3358-3363.
\[20\]Ongari D, Boyd P G, Kadioglu O, et al. Evaluating charge equilibration methods to generate electrostatic fields in nanoporous materials\[J\]. J Chem Theory Comput, 2019, 15:382-401.
\[21\]Senftle T P, Hong S, Islam M M, et al. The reaxFF reactive forcefield: Development, applications and future directions\[J\]. NPJ Comput Mater, 2016, 2:15011.
\[22\]Bousige C, Botan A, Ulm F J, et al. Optimized molecular reconstruction procedure combining hybrid reverse Monte Carlo and molecular dynamics\[J\]. J Chem Phys, 2015, 142:114112.
\[23\]Tuckerman M, Berne B J, Martyna G J. Reversible multiple time scale molecular dynamics\[J\]. J Chem Phys, 1992, 97:1990-2001.
\[24\]Berendsen H J C, Postma J P M, Van G W F, et al. Molecular dynamics with coupling to an external bath\[J\]. J Chem Phys, 1984, 81:3684-3690.
\[25\]Plimpton S. Fast parallel algorithms for shortrange molecular dynamics\[J\]. J Comput Phys, 1995, 117:1-19.
\[26\]Chen J, Zhang Z, Guo Y, et al. Revisiting the electronic and optical properties of SiO2 polymorphs by hybrid functional calculations\[J\]. J Appl Phys, 2023, 133:044101.
\[27\]Niu H, Piaggi P M, Invernizzi M, et al. Molecular dynamics simulations of liquid silica crystallization\[J\]. Proc Natl Acad Sci, 2018, 115:5348-5352.
\[28\]Coleman S P, Spearot D E, Capolungo L. Virtual diffraction analysis of Ni \[010\] symmetric tilt grain boundaries\[J\]. Modell Simul Mater Sci Eng, 2013, 21:055020.
\[29\]Guo M, Kanezashi M, Nagasawa H, et al. Tailoring the microstructure and permeation properties of bridged organosilica membranes via control of the bond angles\[J\]. J Membr Sci, 2019, 584:56-65.
\[30\]Xu R, Ibrahim S M, Kanezashi M, et al. New insights into the microstructureseparation properties of organosilica membranes with ethane, ethylene, and acetylene bridges\[J\]. ACS Appl Mater Interfaces, 2014, 6:9357-9364.
\[31\]Michael B S, Jerry M. March’s advanced organic chemistry\[M\]//John Wiley Sons Ltd, 2006, Chapter 1:24.
\[32\]Potoff J J, Siepmann J I. Vaporliquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen\[J\]. AIChE J, 2001, 47:1676-1682.
\[33\]陈碧芬.应用有机化学\[M\]//宁波:宁波出版社, 2012.
\[34\]Chen C, Huang C, Lin Y, et al. The affinity of Si-N and Si-C bonding in amorphous silicon carbon nitride (aSiCN) thin film\[J\]. Diamond Relat Mater, 2005, 14:1126-1130.
\[35\]Weinhold F, West R. The nature of the siliconoxygen bond\[J\]. Organometallics, 2011, 30:5815-5824.
\[36\]Yan W, Gao T, Guo X, et al. Structural properties of liquid SiC during rapid solidification\[J\]. Sci World J, 2013, 2013:273023.
\[37\]Sarkisov L, Bueno P R, Sutharson M, et al. Materials informatics with PoreBlazer v4.0 and the CSD MOF database\[J\]. Chem Mater, 2020, 32:9849-9867.
\[38\]Do D D, Do H D. Effects of potential models on the adsorption of ethane and ethylene on graphitized thermal carbon black. Study of twodimensional critical temperature and isosteric heat versus loading\[J\]. Langmuir, 2004, 20:10889-10899.
\[39\]Kohmuean P, Inthomya W, Wongkoblap A, et al. Monte carlo simulation and experimental studies of CO2, CH4 and their mixture capture in porous carbons\[J\]. Molecules, 2021,26(9):2413.
\[40\]Krishnapriyan A S, Montoya J, Haranczyk M, et al. Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metalorganic frameworks\[J\]. Sci Rep 2021, 11(1):8888.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号