单宁酸辅助剥离的MoS2/BNC复合膜渗透能转换性能研究
作者:王旭颖, 杨靖, 王钊毅, 张庆萧, 范议议, 孟秀霞
单位: 山东理工大学 化学化工学院
关键词: 渗透能转换; 二硫化钼; 复合膜; 单宁酸; 细菌纤维素
DOI号: 10.16159/j.cnki.issn1007-8924.2024.05.006
分类号: TQ136.1
出版年,卷(期):页码: 2024,44(5):47-56

摘要:
利用一步水热法制备了二硫化钼/细菌纤维素纳米纤维(MoS2/BNC)复合材料,通过单宁酸(TA)辅助剥离成功制备了大横向尺寸的TA-MoS2/BNC纳米片;采用真空辅助过滤的方法制备了聚醚砜(PES)支撑的TA-MoS2/BNC复合膜,其抗拉强度、破坏应力、屈服应力随着TA含量的增加而增加,当TA质量浓度为200 mg/mL时,其值分别为10.04、2.38和7.78 MPa,显示了较好的组装性能.有效测试面积为7.07 mm2(约为传统膜测试面积3.4×104 μm2的207倍)的TA-MoS2/BNC复合膜表现出了较高的Na+选择性.盐差浓度为50倍时,输出功率密度为8.79 W/m2,盐差浓度为100倍时,输出功率密度达到最高14.18 W/m2,远高于文献报道.这些将为渗透能在较大面积下的高效转换提供有力支撑.
 
 Molybdenum disulfide/bacterial cellulose nanofibres (MoS2/BNC) composites were prepared by onestep hydrothermal method. A large-size TA-MoS2/BNC nanosheets obtained by tannic acid (TA)-assisted exfoliation. The polyethersulfone (PES) supported composite membranes were successfully prepared by vacuum-assisted filtration. The tensile strength, failure stress, and yield strength of the resultant TA-MoS2/BNC composite membrane is up to 10.04 MPa, 2.38 MPa and 7.78 MPa, respectively, showing high-performance assembling. The highly Na+ ion-selective TA-MoS2/BNC composite membranes with the thickness of 870 nm produced an output power density of 8.79 W/m2 at an effective area of 7.07 mm2, which is  about 207 times larger than that of the conventional testing area of 3.4×104 μm2, and captured an output power density of 14.18 W/m2 under a 100-fold salinity gradient, exceeding the reported membrane. These provide a strong guarantee of efficient conversion of osmotic energy for MoS2based membrane. 
 

基金项目:
国家自然科学基金项目(21978157); 山东省自然科学基金项目(ZR2022QB147, ZR2023MB093)

作者简介:
王旭颖(1998-),女,山东淄博人,硕士生,从事二维膜材料渗透能转换发电研究.*通讯作者,E-mail: mengxiux@sdut.edu.cn

参考文献:
 [1]Xi Y, Guo H, Zi Y, et al. Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor\[J\]. Adv Energy Mater, 2017, 7(12): 1602397.
\[2\]Wang Z, Wang L, Elimelech M. Viability of harvesting salinity gradient (blue) energy by nanoporebased osmotic power generation\[J\]. Engineering, 2022, 9: 51-60.
\[3\]Bui T Q, Magnussen O P, Cao V D, et al. Osmotic engine converting energy from salinity difference to a hydraulic accumulator by utilizing polyelectrolyte hydrogels\[J\]. Energy, 2021, 232: 121055.
\[4\]Post J W, Hamelers H V M. Buisman C J N. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system\[J\]. Environ Sci Technol, 2008, 42(15): 5785-5790.
\[5\]Wu Z, Ji P, Wang B, et al. Oppositely charged aligned bacterial cellulose biofilm with nanofluidic channels for osmotic energy harvesting\[J\]. Nano Energy, 2021, 80: 105554.
\[6\]Tong X, Liu S, Crittenden J, et al. Nanofluidic membranes to address the challenges of salinity gradient power harvesting\[J\]. ACS Nano, 2021, 15(4): 5838-5860.
\[7\]Siria A, Poncharal P, Biance A L, et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube\[J\]. Nature, 2013, 494(7438): 455-458.
\[8\]Chen C, Liu D, Yang G, et al. Bioinspired ultrastrong nanocomposite membranes for salinity gradient energy harvesting from organic solutions\[J\]. Adv Energy Mater, 2020, 10(18): 1904098.
\[9\]Safaei J, Gao Y, Hosseinpour M, et al. Vacancy engineering for highefficiency nanofluidic osmotic energy generation\[J\]. J Am Chem Soc, 2023, 145(4): 2669-2678.
\[10\]孙天宇. 石墨烯基离子选择性膜及其在渗透能收集中的应用\[D\]. 济南: 济南大学, 2022.
\[11\]Wang F, Wang Z, Meng X, et al. Advancing osmotic power generation using bioinspired MXenebased membrane via maze breaking\[J\]. J Membr Sci, 2023, 686: 121975.
\[12\]Zhang Z, Yang S, Zhang P, et al. Mechanically strong MXene/Kevlar nanofiber composite membranes as highperformance nanofluidic osmotic power generators\[J\]. Nat Commun, 2019, 10(1): 2920.
\[13\]Chang L, Xiao X. The review of MXenes for osmotic energy harvesting: Synthesis and properties\[J\]. Diam Relat Mater, 2023, 136: 109971.
\[14\]王福凯. MXene膜层间距调控及离子渗透能转化为电能性能研究\[D\]. 淄博: 山东理工大学, 2022.
\[15\]Huang Z, Fang M, Tu B, et al. Essence of the enhanced osmotic energy conversion in a covalent organic framework monolayer\[J\]. ACS Nano, 2022, 16(10): 17149-17156.
\[16\]Fauziah A R, Chu C W, Yeh L H. Engineered subnanochannel ionic diode membranes based on metal-organic frameworks for boosted lithium ion transport and osmotic energy conversion in organic solution\[J\]. Chem Eng J, 2023, 452: 139244.
\[17\]Liu Y C, Yeh L H, Zheng M J, et al. Highly selective and highperformance osmotic power generators in subnanochannel membranes enabled by metalorganic frameworks\[J\]. Sci Adv, 2021, 7(10): eabe9924.
\[18\]Wang J, Cui Z, Li S, et al. Unlocking osmotic energy harvesting potential in challenging realworld hypersaline environments through vermiculitebased heteronanochannels\[J\]. Nat Commun, 2024, 15(1): 608.
\[19\]Zhang Z, Wen L, Jiang L. Nanofluidics for osmotic energy conversion\[J\]. Nat Rev Mater, 2021, 6(7): 622-639.
\[20\]Pendse A, Cetindag S, Rehak P, et al. Highly efficient osmotic energy harvesting in charged boronnitridenanopore membranes\[J\]. Adv Funct Mater, 2021, 31(15): 2009586.
\[21\]Chen C, Liu D, He L, et al. Bioinspired nanocomposite membranes for osmotic energy harvesting\[J\]. Joule, 2020, 4(1): 247-261.
\[22\]Gao Z, Zhang J, Ahmad M, et al. Design of metallic phase WS2/cellulose nanofibers composite membranes for lightboosted osmotic energy conversion\[J\]. Carbohydr Polym, 2022, 296: 119847.
\[23\]Graf M, Lihter M, Unuchek D, et al. Light-enhanced blue energy generation using MoS2 nanopores\[J\]. Joule, 2019, 3(6): 1549-1564.
\[24\]Zhu C, Liu P, Niu B, et al. Metallic two-dimensional MoS2 composites as high-performance osmotic energy conversion membranes\[J\]. J Am Chem Soc, 2021, 143(4): 1932-1940.
\[25\]Wang Q, Wu Y, Zhu C, et al. Efficient solar-osmotic power generation from bioinspired anti-fouling 2D WS2 composite membranes\[J\]. Angew Chem, 2023, 135(23): e202302938.
\[26\]辛伟闻. 闻利平. 二维材料用于渗透能转换的研究进展 \[J\]. 高等学校化学学报, 2021, 42(2): 445-455.
\[27\]Wang S, Zhang D, Li B, et al. Ultrastable in-plane 1T2H MoS2 heterostructures for enhanced hydrogen evolution reaction\[J\]. Adv Energy Mater, 2018, 8(25): 1801345.
\[28\]Ma M Q, Zhang C, Zhu C Y, et al. Nanocomposite membranes embedded with functionalized MoS2  nanosheets for enhanced interfacial compatibility and nanofiltration performance\[J\]. J Membr Sci, 2019, 591:117316.
\[29\]Wang Z Y. Mi B X. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets\[J\]. Environ Sci Technol, 2017, 51(15): 8229-8244.
\[30\]Wang J, Song Z, He M, et al. Lightresponsive and ultrapermeable twodimensional metal-organic framework membrane for efficient ionic energy harvesting\[J\]. Nat Commun, 2024, 15(1): 2125.
\[31\]Ding Z, Gu T, Zhang R, et al. Plasmaoxidized 2D MXenes subnanochannel membrane for high-performance osmotic energy conversion\[J\]. Carbon Energy, 2024: e509.
\[32\]Liu Z, Gao Z, Liu Y, et al. Heterogeneous nanostructure based on 1Tphase MoS2 for enhanced electrocatalytic hydrogen evolution\[J\]. ACS Appl Mater, 2017, 9(30): 25291-25297.
\[33\]Ding L, Zheng M, Xiao D, et al. Bioinspired Ti3C2Tx MXenebased ionic diode membrane for highefficient osmotic energy conversion\[J\]. Angew, 2022, 61(41): e202206152.
\[34\]Chen M, Yang K, Wang J, et al. In situ growth of imine-bridged anion-selective COF/AAO membrane for ion current rectification and nanofluidic osmotic energy conversion\[J\]. Adv Funct Mater, 2023, 33(36): 2302427.
\[35\]Wang X, Ding W, Li H, et al. Unveiling highly ambient-stable multilayered 1TMoS2 towards all-solid-state flexible supercapacitors\[J\]. J Mater A, 2019, 7(32): 19152-19160.
\[36\]Yuan Q, Huang L Z, Wang P L, et al. Cellulose nanofiber/molybdenum disulfide aerogels for ultrahigh photothermal effect\[J\]. J Colloid Interface Sci, 2022, 624: 70-78.
\[37\]Yang J, Choi M K, Sheng Y, et al. MoS2 liquid cell electron microscopy through clean and fast polymer-free MoS2 transfer\[J\]. Nano Letters, 2019, 19(3): 1788-1795.
\[38\]Nam G H, He Q, Wang X, et al. Inplane anisotropic properties of 1T′MoS2 layers\[J\]. Adv Mater, 2019, 31(21): 1807764.
\[39\]Son E, Lee S, Seo J, et al. Engineering the local atomic configuration in 2H TMDs for efficient electrocatalytic hydrogen evolution\[J\]. ACS Nano, 2023, 17(11): 10817-10826.
\[40\]Sun D, Huang D, Wang H, et al. 1T MoS2 nanosheets with extraordinary sodium storage properties via thermaldriven ion intercalation assisted exfoliation of bulky MoS2\[J\]. Nano Energy, 2019, 61: 361-369.
\[41\]Wei J, He P, Wu J, et al. Conversion of 2H MoS2 to 1T MoS2 via lithium ion doping: Effective removal of elemental mercury\[J\]. Chem Eng J, 2022, 428: 131014.
\[42\]Liu G, Zeng Q, Sui X, et al. Modulating dband electronic structures of molybdenum disulfide via p/n doping to boost polysulfide conversion in lithiumsulfur batteries\[J\]. Small, 2023, 19(37): 230185.
\[43\]Bo Z, Cheng X, Yang H, et al. Ultrathick MoS2 films with exceptionally high volumetric capacitance\[J\]. Adv Energy Mater, 2022, 12(11): 2103394.
\[44\]Peng H, Wang D, Fu S. Tannic acidassisted green exfoliation and functionalization of MoS2 nanosheets: Significantly improve the mechanical and flameretardant properties of polyacrylonitrile composite fibers\[J\]. Chem Eng J, 2020, 384: 123288.
\[45\]Yan W, Shi M, Dong C, et al. Applications of tannic acid in membrane technologies: A review\[J\]. Adv Colloid Interface Sci, 2020, 284: 102267.
\[46\]Nakagawa K, Ueno T, Wang Z, et al. Continuous catalytic reduction of pnitrophenol confined within two-dimensional nanochannels in laminar MoS2 membranes\[J\]. Chem Eng J, 2023, 474: 145671.
\[47\]Liu C, Ye C, Zhang T, et al. Bioinspired double angstromscale confinement in Tideficient Ti0.87O2 nanosheet membranes for ultrahighperformance osmotic power generation\[J\]. Angew, 2023, 63(4): e202315947.
\[48\]Zhang X, Li M, Zhang F, et al. Robust cellulose nanocrystalbased selfassembled composite membranes doped with polyvinyl alcohol and graphene oxide for osmotic energy harvesting\[J\]. Small, 2023, 19(50): 2304603.
\[49\]Tang J, Wang Y, Yang H, et al. All-natural 2D nanofluidics as highlyefficient osmotic energy generators\[J\]. Nat Commun, 2024, 15(1): 3649.
\[50\]Wang J, Wang L, Shao N, et al. Heterogeneous two-dimensional lamellar Ti3C2Tx membrane for osmotic power harvesting\[J\]. Chem Eng J, 2023, 452: 139531.
\[51\]Zhai R, Jiang L, Chen Z, et al. Kelp nanofiber-based composite membranes for highly efficient osmotic energy conversion\[J\]. Adv Funct Mater, 2023: 2313914.
\[52\]Huang T, Kan X N, Fan J L, et al. Two-dimensional sodium channels with high selectivity and conductivity for osmotic power generation from wastewater\[J\]. ACS Nano, 2023, 17(17): 17245-17253.
\[53\]Zhong J, Xu T, Qi H, et al. Permeability and selectivity synergistically enhanced nanofluidic membrane for osmotic energy harvesting\[J\]. Carbon Energy, 2024: e458.
\[54\]Hong S, ElDemellawi J K, Lei Y, et al. Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting\[J\]. ACS Nano, 2022, 16(1): 792-800.
\[55\]Wang J, Wang D, Song Z, et al. Efficient solar energy conversion via bionic sunlight-driven ion transport boosted by synergistic photoelectric/thermal effects\[J\]. Energ Environ Sci, 2023, 16(7): 3146-3157.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号