单宁酸辅助剥离的MoS2/BNC复合膜渗透能转换性能研究
作者:王旭颖, 杨靖, 王钊毅, 张庆萧, 范议议, 孟秀霞
单位: 山东理工大学 化学化工学院
关键词: 渗透能转换; 二硫化钼; 复合膜; 单宁酸; 细菌纤维素
DOI号: 10.16159/j.cnki.issn1007-8924.2024.05.006
分类号: TQ136.1
出版年,卷(期):页码: 2024,44(5):47-56

摘要:
 
利用一步水热法制备了二硫化钼/细菌纤维素纳米纤维(MoS2/BNC)复合材料,通过单宁酸(TA)辅助剥离成功制备了大横向尺寸的TA-MoS2/BNC纳米片;采用真空辅助过滤的方法制备了聚醚砜(PES)支撑的TA-MoS2/BNC复合膜,其抗拉强度、破坏应力、屈服应力随着TA含量的增加而增加,当TA质量浓度为200 mg/mL时,其值分别为10.04、2.38和7.78 MPa,显示了较好的组装性能.有效测试面积为7.07 mm2(约为传统膜测试面积3.4×104 μm2的207倍)的TA-MoS2/BNC复合膜表现出了较高的Na+选择性.盐差浓度为50倍时,输出功率密度为8.79 W/m2,盐差浓度为100倍时,输出功率密度达到最高14.18 W/m2,远高于文献报道.这些将为渗透能在较大面积下的高效转换提供有力支撑.
 
Molybdenum disulfide/bacterial cellulose nanofibres (MoS2/BNC) composites were prepared by one-step hydrothermal method. A large-size TA-MoS2/BNC nanosheets obtained by tannic acid (TA)-assisted exfoliation. The polyethersulfone (PES) supported composite membranes were successfully prepared by vacuum-assisted filtration. The tensile strength, failure stress, and yield strength of the resultant TA-MoS2/BNC composite membrane is up to 10.04 MPa, 2.38 MPa and 7.78 MPa, respectively, showing high-performance assembling. The highly Na+ ion-selective TA-MoS2/BNC composite membranes with the thickness of 870 nm produced an output power density of 8.79 W/m2 at an effective area of 7.07 mm2, which is  about 207 times larger than that of the conventional testing area of 3.4×104 μm2, and captured an output power density of 14.18 W/m2 under a 100-fold salinity gradient, exceeding the reported membrane. These provide a strong guarantee of efficient conversion of osmotic energy for MoS2-based membrane.

基金项目:
国家自然科学基金项目(21978157); 山东省自然科学基金项目(ZR2022QB147, ZR2023MB093)

作者简介:
王旭颖(1998-),女,山东淄博人,硕士生,从事二维膜材料渗透能转换发电研究.*通讯作者,E-mail: mengxiux@sdut.edu.cn

参考文献:
[1]Xi Y, Guo H, Zi Y, et al. Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor[J]. Adv Energy Mater, 2017, 7(12): 1602397.
[2]Wang Z, Wang L, Elimelech M. Viability of harvesting salinity gradient (blue) energy by nanopore-based osmotic power generation[J]. Engineering, 2022, 9: 51-60.
[3]Bui T Q, Magnussen O P, Cao V D, et al. Osmotic engine converting energy from salinity difference to a hydraulic accumulator by utilizing polyelectrolyte hydrogels[J]. Energy, 2021, 232: 121055.
[4]Post J W, Hamelers H V M. Buisman C J N. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system[J]. Environ Sci Technol, 2008, 42(15): 5785-5790.
[5]Wu Z, Ji P, Wang B, et al. Oppositely charged aligned bacterial cellulose biofilm with nanofluidic channels for osmotic energy harvesting[J]. Nano Energy, 2021, 80: 105554.
[6]Tong X, Liu S, Crittenden J, et al. Nanofluidic membranes to address the challenges of salinity gradient power harvesting[J]. ACS Nano, 2021, 15(4): 5838-5860.
[7]Siria A, Poncharal P, Biance A L, et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube[J]. Nature, 2013, 494(7438): 455-458.
[8]Chen C, Liu D, Yang G, et al. Bioinspired ultrastrong nanocomposite membranes for salinity gradient energy harvesting from organic solutions[J]. Adv Energy Mater, 2020, 10(18): 1904098.
[9]Safaei J, Gao Y, Hosseinpour M, et al. Vacancy engineering for high-efficiency nanofluidic osmotic energy generation[J]. J Am Chem Soc, 2023, 145(4): 2669-2678.
[10]孙天宇. 石墨烯基离子选择性膜及其在渗透能收集中的应用[D]. 济南: 济南大学, 2022.
[11]Wang F, Wang Z, Meng X, et al. Advancing osmotic power generation using bioinspired MXene-based membrane via maze breaking[J]. J Membr Sci, 2023, 686: 121975.
[12]Zhang Z, Yang S, Zhang P, et al. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators[J]. Nat Commun, 2019, 10(1): 2920.
[13]Chang L, Xiao X. The review of MXenes for osmotic energy harvesting: Synthesis and properties[J]. Diam Relat Mater, 2023, 136: 109971.
[14]王福凯. MXene膜层间距调控及离子渗透能转化为电能性能研究[D]. 淄博: 山东理工大学, 2022.
[15]Huang Z, Fang M, Tu B, et al. Essence of the enhanced osmotic energy conversion in a covalent organic framework monolayer[J]. ACS Nano, 2022, 16(10): 17149-17156.
[16]Fauziah A R, Chu C W, Yeh L H. Engineered subnanochannel ionic diode membranes based on metal-organic frameworks for boosted lithium ion transport and osmotic energy conversion in organic solution[J]. Chem Eng J, 2023, 452: 139244.
[17]Liu Y C, Yeh L H, Zheng M J, et al. Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks[J]. Sci Adv, 2021, 7(10): eabe9924.
[18]Wang J, Cui Z, Li S, et al. Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels[J]. Nat Commun, 2024, 15(1): 608.
[19]Zhang Z, Wen L, Jiang L. Nanofluidics for osmotic energy conversion[J]. Nat Rev Mater, 2021, 6(7): 622-639.
[20]Pendse A, Cetindag S, Rehak P, et al. Highly efficient osmotic energy harvesting in charged boron-nitride-nanopore membranes[J]. Adv Funct Mater, 2021, 31(15): 2009586.
[21]Chen C, Liu D, He L, et al. Bio-inspired nanocomposite membranes for osmotic energy harvesting[J]. Joule, 2020, 4(1): 247-261.
[22]Gao Z, Zhang J, Ahmad M, et al. Design of metallic phase WS2/cellulose nanofibers composite membranes for light-boosted osmotic energy conversion[J]. Carbohydr Polym, 2022, 296: 119847.
[23]Graf M, Lihter M, Unuchek D, et al. Light-enhanced blue energy generation using MoS2 nanopores[J]. Joule, 2019, 3(6): 1549-1564.
[24]Zhu C, Liu P, Niu B, et al. Metallic two-dimensional MoS2 composites as high-performance osmotic energy conversion membranes[J]. J Am Chem Soc, 2021, 143(4): 1932-1940.
[25]Wang Q, Wu Y, Zhu C, et al. Efficient solar-osmotic power generation from bioinspired anti-fouling 2D WS2 composite membranes[J]. Angew Chem, 2023, 135(23): e202302938.
[26]辛伟闻. 闻利平. 二维材料用于渗透能转换的研究进展 [J]. 高等学校化学学报, 2021, 42(2): 445-455.
[27]Wang S, Zhang D, Li B, et al. Ultrastable in-plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction[J]. Adv Energy Mater, 2018, 8(25): 1801345.
[28]Ma M Q, Zhang C, Zhu C Y, et al. Nanocomposite membranes embedded with functionalized MoS2  nanosheets for enhanced interfacial compatibility and nanofiltration performance[J]. J Membr Sci, 2019, 591:117316.
[29]Wang Z Y. Mi B X. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets[J]. Environ Sci Technol, 2017, 51(15): 8229-8244.
[30]Wang J, Song Z, He M, et al. Light-responsive and ultrapermeable two-dimensional metal-organic framework membrane for efficient ionic energy harvesting[J]. Nat Commun, 2024, 15(1): 2125.
[31]Ding Z, Gu T, Zhang R, et al. Plasma-oxidized 2D MXenes subnanochannel membrane for high-performance osmotic energy conversion[J]. Carbon Energy, 2024: e509.
[32]Liu Z, Gao Z, Liu Y, et al. Heterogeneous nanostructure based on 1T-phase MoS2 for enhanced electrocatalytic hydrogen evolution[J]. ACS Appl Mater, 2017, 9(30): 25291-25297.
[33]Ding L, Zheng M, Xiao D, et al. Bioinspired Ti3C2Tx MXene-based ionic diode membrane for high-efficient osmotic energy conversion[J]. Angew, 2022, 61(41): e202206152.
[34]Chen M, Yang K, Wang J, et al. In situ growth of imine-bridged anion-selective COF/AAO membrane for ion current rectification and nanofluidic osmotic energy conversion[J]. Adv Funct Mater, 2023, 33(36): 2302427.
[35]Wang X, Ding W, Li H, et al. Unveiling highly ambient-stable multilayered 1T-MoS2 towards all-solid-state flexible supercapacitors[J]. J Mater A, 2019, 7(32): 19152-19160.
[36]Yuan Q, Huang L Z, Wang P L, et al. Cellulose nanofiber/molybdenum disulfide aerogels for ultrahigh photothermal effect[J]. J Colloid Interface Sci, 2022, 624: 70-78.
[37]Yang J, Choi M K, Sheng Y, et al. MoS2 liquid cell electron microscopy through clean and fast polymer-free MoS2 transfer[J]. Nano Letters, 2019, 19(3): 1788-1795.
[38]Nam G H, He Q, Wang X, et al. In-plane anisotropic properties of 1T′-MoS2 layers[J]. Adv Mater, 2019, 31(21): 1807764.
[39]Son E, Lee S, Seo J, et al. Engineering the local atomic configuration in 2H TMDs for efficient electrocatalytic hydrogen evolution[J]. ACS Nano, 2023, 17(11): 10817-10826.
[40]Sun D, Huang D, Wang H, et al. 1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2[J]. Nano Energy, 2019, 61: 361-369.
[41]Wei J, He P, Wu J, et al. Conversion of 2H MoS2 to 1T MoS2 via lithium ion doping: Effective removal of elemental mercury[J]. Chem Eng J, 2022, 428: 131014.
[42]Liu G, Zeng Q, Sui X, et al. Modulating d-band electronic structures of molybdenum disulfide via p/n doping to boost polysulfide conversion in lithium-sulfur batteries[J]. Small, 2023, 19(37): 230185.
[43]Bo Z, Cheng X, Yang H, et al. Ultrathick MoS2 films with exceptionally high volumetric capacitance[J]. Adv Energy Mater, 2022, 12(11): 2103394.
[44]Peng H, Wang D, Fu S. Tannic acid-assisted green exfoliation and functionalization of MoS2 nanosheets: Significantly improve the mechanical and flame-retardant properties of polyacrylonitrile composite fibers[J]. Chem Eng J, 2020, 384: 123288.
[45]Yan W, Shi M, Dong C, et al. Applications of tannic acid in membrane technologies: A review[J]. Adv Colloid Interface Sci, 2020, 284: 102267.
[46]Nakagawa K, Ueno T, Wang Z, et al. Continuous catalytic reduction of p-nitrophenol confined within two-dimensional nanochannels in laminar MoS2 membranes[J]. Chem Eng J, 2023, 474: 145671.
[47]Liu C, Ye C, Zhang T, et al. Bio-inspired double angstrom-scale confinement in Ti-deficient Ti0.87O2 nanosheet membranes for ultrahigh-performance osmotic power generation[J]. Angew, 2023, 63(4): e202315947.
[48]Zhang X, Li M, Zhang F, et al. Robust cellulose nanocrystal-based self-assembled composite membranes doped with polyvinyl alcohol and graphene oxide for osmotic energy harvesting[J]. Small, 2023, 19(50): 2304603.
[49]Tang J, Wang Y, Yang H, et al. All-natural 2D nanofluidics as highly-efficient osmotic energy generators[J]. Nat Commun, 2024, 15(1): 3649.
[50]Wang J, Wang L, Shao N, et al. Heterogeneous two-dimensional lamellar Ti3C2Tx membrane for osmotic power harvesting[J]. Chem Eng J, 2023, 452: 139531.
[51]Zhai R, Jiang L, Chen Z, et al. Kelp nanofiber-based composite membranes for highly efficient osmotic energy conversion[J]. Adv Funct Mater, 2023: 2313914.
[52]Huang T, Kan X N, Fan J L, et al. Two-dimensional sodium channels with high selectivity and conductivity for osmotic power generation from wastewater[J]. ACS Nano, 2023, 17(17): 17245-17253.
[53]Zhong J, Xu T, Qi H, et al. Permeability and selectivity synergistically enhanced nanofluidic membrane for osmotic energy harvesting[J]. Carbon Energy, 2024: e458.
[54]Hong S, El-Demellawi J K, Lei Y, et al. Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting[J]. ACS Nano, 2022, 16(1): 792-800.
[55]Wang J, Wang D, Song Z, et al. Efficient solar energy conversion via bionic sunlight-driven ion transport boosted by synergistic photo-electric/thermal effects[J]. Energ Environ Sci, 2023, 16(7): 3146-3157.
 
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号