DCMC/PEI涂层改性PVDF超滤膜的分离和抗污染性能研究 |
作者:王茜蕙, 刘俊良, 张干伟 , 黄逸轩 |
单位: 江苏省分离净化材料与技术工程研究中心, 苏州科技大学 环境科学与工程学院 |
关键词: PVDF超滤膜; 涂层; 双醛羧甲基纤维素; 聚乙烯亚胺; 天然有机物; 抗污染 |
DOI号: 10.16159/j.cnki.issn1007-8924.2024.05.007 |
分类号: TQ028.8 |
出版年,卷(期):页码: 2024,44(5):57-66 |
摘要: |
为了减轻膜污染和提高膜的分离性能,采用一步沉积法将双醛羧甲基纤维素(DCMC)和聚乙烯亚胺(PEI)涂覆在聚偏氟乙烯(PVDF)超滤膜的表面.DCMC上的醛基可以和PEI上的氨基在膜表面发生席夫碱反应,形成化学交联.与纯PVDF膜相比,DCMC/PEI涂层改性膜具有更高的亲水性(水接触角<40°)和收缩的孔径(平均孔径≈20.32 nm).以腐殖酸(HA)、牛血清白蛋白(BSA)和海藻酸钠(SA)为代表,研究DCMC/PEI涂层改性膜的分离和抗污染性能.涂层膜对HA、BSA和SA具有超过93%的截留率和通量恢复率(FRR),相比原PVDF膜提升了38%.这种兼具高分离和抗污染性能的纤维素涂层膜,为废水净化提供了新的思路. |
In order to reduce membrane contamination and improve membrane separation performance, a onestep deposition method was used to coat bisformaldehyde carboxymethyl cellulose (DCMC) and polyethyleneimine (PEI) on the surface of polyvinylidene fluoride (PVDF) ultrafiltration membranes. Schiff base reactions occurred between the aldehyde groups on DCMC and the amino groups on PEI, forming a stable chemical crosslinking on the membrane surface. Compared to the pristine PVDF membrane, the DCMC/PEIcoated membrane exhibited enhanced hydrophilicity (water contact angle < 40°) and a reduced pore size (average pore size ≈ 20.32 nm). Humic acid (HA), bovine serum albumin (BSA), and sodium alginate (SA) were used as model pollutants from surface water for NOM rejection and antifouling experiments. The coated membrane provides over 93% rejection and flux recovery (FRR) of HA, BSA and SA, a 38% improvement over the original PVDF membrane. This cellulosebased coated membrane, which possesses both high separation and antifouling properties, offers a novel approach to mitigating membrane fouling. |
基金项目: |
国家自然科学基金项目(51978433); 苏州市科技发展计划项目(SGC2021120) |
作者简介: |
王茜蕙(2000-),女,河南济源人,硕士生,研究方向为有机高分子膜的制备及其性能.*通讯作者,E-mail:zhangganwei214036@126.com |
参考文献: |
[1]Gu M, Zhang G, Liu J, et al. Tunable multipurpose separation technology based on crosslinked dialdehydeβcyclodextrin and polyethyleneimine coating membrane\[J\]. Sep Purif Technol, 2023, 320: 124077. \[2\]张浩然, 祝振洲, 陈旭,等. 基于刺激响应机制的抗污染膜研究进展\[J\]. 膜科学与技术, 2023, 43(3): 190-197. \[3\]Le T M H, Wang R, Sairiam S. Self-protecting PVDFPDATiO2 membranes towards highly efficient and prolonged dye wastewater treatment by photocatalytic membranes\[J\]. J Membr Sci, 2023, 683: 121789. \[4\]Meng J, Xie Y, Gu Y H, et al. PVDFCaAlg nanofiltration membranes with dual thinfilmcomposite (TFC) structure and high permeation flux for dye removal\[J\]. Sep Purif Technol, 2021, 255: 117739. \[5\]吴曜辰, 曾嘉, 王宇飞,等. GO/PDA/CNT双层低压膜去除腐殖酸及抗污染性能\[J\]. 膜科学与技术, 2023, 43(6): 61-70. \[6\]Zhai W, Yu H, Chen H, et al. Stable fouling resistance of polyethylene (PE) separator membrane via oxygen plasma plus zwitterion grafting\[J\]. Sep Purif Technol, 2022, 293: 121091. \[7\]Xi Z Y, Xu Y Y, Zhu L P, et al. A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine)\[J\]. J Membr Sci, 2009, 327(1/2): 244-253. \[8\]Mu L J, Zhao W Z. Hydrophilic modification of polyethersulfone porous membranes via a thermal-induced surface crosslinking approach\[J\]. Appl Surf Sci, 2009, 255(16): 7273-7278. \[9\]Xia S, Yao L, Zhao Y, et al. Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal\[J\]. Chem Eng J, 2015, 280: 720-727. \[10\]Khraisheh M, Elhenawy S, AlMomani F, et al. Recent progress on nanomaterial-based membranes for water treatment\[J\]. Membranes, 2021, 11(12):995. \[11\]王梓, 林凤采, 熊明诚,等. 纤维素基有机-无机杂化复合膜的制备及其吸附性能\[J\]. 化工进展, 2019, 38(9): 4204-4211. \[12\]Hu Q, Zhou F, Lu H, et al. Improved antifouling performance of a polyamide composite reverse osmosis membrane by surface grafting of dialdehyde carboxymethyl cellulose (DACMC)\[J\]. J Membr Sci, 2021, 620: 118843. \[13\]Li Z, Du G, Yang H, et al. Construction of a cellulose-based high-performance adhesive with a crosslinking structure bridged by Schiff base and ureido groups\[J\]. Int J Biol Macromol, 2022, 223: 971-979. \[14\]Zhu R, Wang D, Liu Y, et al. Bifunctional superwetting carbon nanotubes/cellulose composite membrane for solar desalination and oily seawater purification\[J\]. Chem Eng J, 2022, 433: 133510. \[15\]Xie A, Cui J, Yang J, et al. Photo-Fenton self-cleaning PVDF/NH2MIL88B(Fe) membranes towards highly-efficient oil/water emulsion separation\[J\]. J Membr Sci, 2020, 595: 117499. \[16\]Zhang Y, Shen F, Cao W, et al. Hydrophilic/hydrophobic Janus membranes with a dual-function surface coating for rapid and robust membrane distillation desalination\[J\]. Desalination, 2020, 491: 114561. \[17\]Cheng K, Zhang N, Yang N, et al. Rapid and robust modification of PVDF ultrafiltration membranes with enhanced permselectivity, antifouling and antibacterial performance\[J\]. Sep Purif Technol, 2021, 262: 118316. \[18\]Bai L, Wu H, Ding J, et al. Cellulose nanocrystal-blended polyethersulfone membranes for enhanced removal of natural organic matter and alleviation of membrane fouling\[J\]. Chem Eng J, 2020, 382: 122919. \[19\]Yang X, Yan L, Ma J, et al. Bioadhesion-inspired surface engineering constructing robust, hydrophilic membranes for highlyefficient wastewater remediation\[J\]. J Membr Sci, 2019, 591: 117353. \[20\]Han D J, Kim J F, Lee J C, et al. Design of an ionic PVDF-based additive for PVDF water purification membranes with anti-fouling and bactericidal activities\[J\]. J Membr Sci, 2023, 683: 121839. \[21\]Amiri S, Asghari A, HarifiMood A R, et al. Polyvinyl alcohol and sodium alginate hydrogel coating with different crosslinking procedures on a PSf support for fabricating highflux NF membranes\[J\]. Chemosphere, 2022, 308: 136323. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号