利用水热二次生长法制备用于H2/CO2分离的KAUST-8膜
作者:asad sharif, 王泓博, 鲁金明, 杨建华, 刘毅
单位: 大连理工大学 吸附与无机膜研究所, 精细化工国家重点实验室
关键词: CO2分离; KAUST-8膜; 氟化金属有机框架膜; 水热合成; H2纯化
DOI号: 10.16159/j.cnki.issn1007-8924.2024.05.011
分类号: TQ028.8
出版年,卷(期):页码: 2024,44(5):90-99

摘要:
KAUST-8纳米片比表面积和孔隙率较高、铝金属位点丰富,因此具有出色的二氧化碳吸附能力.在本研究中,采用水热二次生长技术,在粗糙的大孔α-Al2O3载体管上,引入氧化铝和硝酸镍作为前驱体,其中,Al2O3用于控制无机支柱[AlF5(H2O)]2-的生长,Ni(NO3)2·6H2O用于提高金属前驱体镍源在溶剂中的溶解度,促进 Ni(Ⅱ)-吡嗪方格的形成,并与无机柱中心[AlF5(H2O)]2-反应,合成了多晶KAUST-8膜.并进一步探讨了反应物浓度、时间、温度等合成条件以及溶剂对KAUST-8膜性能的影响.优化后的 KAUST-8膜的H2渗透率为1.27×10-7 mol/(m2·s·Pa)(25 ℃、 0.1 MPa条件下),H2/CO2的理想选择性为19.3.
 
 
KAUST-8 nanosheets exhibit high surface area and pore volume, leading to exceptional CO2 adsorption due to Al metal sites. In this study,  polycrystalline KAUST-8 membranes were developed using a hydrothermal secondary growth technique on coarse microporous α-Al2O3 tube supports, employing aluminum oxide and nickel nitrate precursors. Al2O3 was to control the growth of inorganic pillar [AlF5(H2O)]2- and Ni(NO3)2·6H2O for its enhanced solubility of precursor nickel sources, to form Ni(Ⅱ)-pyrazine square grids which reacted with the pillar to grow KAUST-8 crystals. Additionally, water was used as a solvent to promote membrane growth. Moreover, the synthesis conditions of reactant concentration, time, temperature, and effects of solvents were explored. The resulting optimized KAUST-8 membrane demonstrated H2 permeance rate of 1.27×10-7 mol/(m2·s·Pa) (at 25 ℃ and 0.1 MPa) and ideal selectivity of H2/CO2 of 19.3. 
 

基金项目:
国家自然科学基金项目(21776031, 22378044)

作者简介:
Asad Sharif(1995-),男,巴基斯坦人,硕士生,从事MOF膜的制备与应用.*通讯作者,E-mail:ljinming@dlut.edu.cn

参考文献:
[1]Sholl D S, Lively R P. Seven chemical separations to change the world [J]. Nature, 2016, 532(7600): 435-437.
[2]Dziejarski B, Krzyzyńska R, Andersson K. Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment [J]. Fuel, 2023, 342: 127776.
[3] Awwad M, Bilal M, Sajid M, et al. MOF-based membranes for oil/water separation: Status, challenges, and prospects[J]. J Environ Chem Eng, 2023, 11(1): 109073.
[4]Kitagawa S. Metal-organic frameworks (MOFs)[J]. Chem Soc Rev, 2014, 43(16): 5415-5418.
[5] Yaghi O M, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706.
[6]Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J]. Science, 2002, 295(5554): 469-472.
[7]Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990): 424-428.
[8]Ma S, Zhou H C. Gas storage in porous metal-organic frameworks for clean energy applications [J]. Chem Commun, 2010, 46(1): 44-53.
[9]Chakraborty G, Park I H, Medishetty R, et al. Two-dimensional metal-organic framework materials: Synthesis, structures, properties and applications [J]. Chem Rev, 2021, 121(7): 3751-3891.
[10]Song Y, Sun Y, Du D, et al. Fabrication of c-oriented ultrathin TCPP-derived 2D MOF membrane for precise molecular sieving [J]. J Membr Sci, 2021, 634: 119393.
[11]Pan Y, Lai Z. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions[J]. Chem Commun, 2011, 47(37): 10275-10277.
[12]Wei R, Chi H Y, Li X, et al. Aqueously cathodic deposition of ZIF-8 membranes for superior propylene/propane separation[J]. Adv Funct Mater, 2020, 30(7): 1907089.
[13]Moon J D, Freeman B D, Hawker C J, et al. Can self-assembly address the permeability/selectivity trade-offs in polymer membranes?[J]. ACS Publ, 2020, 53: 5649-5654.
[14]Hao J, Babu D J, Liu Q, et al. Synthesis of high-performance polycrystalline metal-organic framework membranes at room temperature in a few minutes[J]. J Mater Chem A, 2020, 8(16): 7633-7640.
[15]Liu Y, Ng Z, Khan E A, et al. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates[J]. Microporous and Mesoporous Mater, 2009, 118(1): 296-301.
[16]Jeazet H B T, Staudt C, Janiak C. Metal-organic frameworks in mixed-matrix membranes for gas separation [J]. Dalton Trans, 2012, 41(46): 14003-14027.
[17]Cadiau A, Belmabkhout Y, Adil K, et al. Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration [J]. Science, 2017, 356(6339): 731-735.
[18]Lyu J, Zhou X, Yang J, et al. In-situ synthesis of KAUST-7 membranes from fluorinated molecular building block for H2/CO2 separation[J]. J Membr Sci, 2022, 658: 120585.
[19]Tchalala M, Bhatt P, Chappanda K, et al. Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air [J]. Nat Commun, 2019, 10(1): 1328.
[20]Georgiadis A G, Charisiou N, Yentekakis I V, et al. Hydrogen sulfide (H2S) removal via MOFs[J]. Materials, 2020, 13(16): 3640.
[21]Datta S J, Mayoral A, Murthy S B N, et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations[J]. Science, 2022, 376(6597): 1080-1087.
[22]Hou R, Wang S, Wang L, et al. Enhanced CO2 separation performance by incorporating KAUST-8 nanosheets into crosslinked poly (ethylene oxide) membrane[J]. Sep Purif Technol, 2023, 309: 123057.
[23]Zhou S, Shekhah O, Jin T, et al. A CO2-recognition metal-organic framework membrane for continuous carbon capture[J]. Chem, 2023, 9(5): 1182-1194.
[24]Huang A, Bux H, Steinbach F, et al. Molecular‐sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3‐aminopropyltriethoxysilane as covalent linker [J]. Angew Chem Int Ed, 2010, 29(49): 4958-4961.
[25]Zhou S, Zou X, Sun F, et al. Challenging fabrication of hollow ceramic fiber supported Cu3(BTC)2 membrane for hydrogen separation [J]. J Mater Chem, 2012, 22(20): 10322-10328.
[26]Nian P, Cao Y, Li Y, et al. Preparation of a pure ZIF-67 membrane by self-conversion of cobalt carbonate hydroxide nanowires for H2 separation[J]. Cryst Eng Comm, 2018, 20(17): 2440-2448.
[27]Liu J, Liu C, Huang A. Co-based zeolitic imidazolate framework ZIF-9 membranes prepared on α-Al2O3 tubes through covalent modification for hydrogen separation[J]. Int J Hydro Energy, 2020, 45(1): 703-711.
[28]Lyu J, Cui Y, Yang J, et al. Inorganic pillar center-facilitated counterdiffusion synthesis for highly H2 perm-selective KAUST-7 membranes[J]. ACS Appl Mater Interfaces, 2022, 14(3): 4297-4306.
 
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号