高通量聚间苯二甲酰间苯二胺超滤膜的制备与性能研究
作者:刘春波13, 刘玮2, 徐瑞松3, 唐石云1, 赵蔚1, 朱志扬1,何沛1, 由博妍4, 冯欣1, 张冉3, 侯蒙杰3, 李 琳3, 王同华3
单位: 1. 云南中烟工业有限责任公司, 云南省烟草化学重点实验室 2.红塔烟草(集团)有限责任公司, 玉溪卷烟厂卷包一车间 3. 大连理工大学 化工学院 精细化工国家重点实验室, 大连市膜与膜过程重点实验室 4. 抚顺市食品检验检测所
关键词: 超滤膜; 芳香族聚酰胺; 聚间苯二甲酰间苯二胺; 添加剂; 孔结构调控
DOI号: 10.16159/j.cnki.issn1007-8924.2024.05.012
分类号: TQ028.8
出版年,卷(期):页码: 2024,44(5):100-107

摘要:
 以聚间苯二甲酰间苯二胺(PMIA)为膜材料,H2O和CaCl2为混合添加剂,采用L-S相转化法制备PMIA基超滤膜,并分别考察了H2O和CaCl2浓度对超滤膜的孔结构、孔隙率、水渗透通量以及对葡聚糖截留性能的影响规律.结果表明,引入适量H2O作为助溶剂,会提高CaCl2在DMAc溶剂中的溶解度,降低溶剂与非溶剂的交换速率,延迟相分离使得膜形成更发达的海绵状孔和直通型指状孔结构,因而具有较高的孔隙率、纯水渗透率以及葡聚糖截留率;同样,向铸膜液体系中加入适量的CaCl2,离子-偶极作用会破坏PMIA分子间的氢键,因增加了铸膜液的热力学稳定性而延迟相分离.当H2O的添加质量分数为10%,CaCl2为4%时,所制备PMIA超滤膜的孔隙率高达73.7 %,纯水渗透率为16 970 L/(m2·h·MPa),同时对相对分子质量为150 000葡聚糖的截留率为90.5%,BSA截留率为98.9%,展现出良好的应用前景. 
 
 In this work, ultrafiltration membranes derived from poly(m-phenylene isophthalamide) (PMIA) were prepared using L-S phase inversion method with H2O and CaCl2 used as mixed additives. The effects of H2O and CaCl2 concentrations on the pore structure, porosity, water flux, and dextran retention performance of the ultrafiltration membranes were investigated, respectively. Results showed that the introduction of an appropriate amount of H2O as a cosolvent can enhance the CaCl2 solubility in the DMAc solvent, and reduce the exchange rate between solvent and non-solvent and delay phase separation, resulting in the formation of more developed sponge-like pores and straight finger-like pore structures and membranes with high porosity, high water flux and dextran retention rate. Similarly, adding an appropriate amount of CaCl2 to the casting solution can increase the thermodynamic stability of solution and also delay phase separation, since the ion-dipole interaction may disrupt the hydrogen bonds between PMIA molecules. With adding  10% (mass fraction)  H2O and 4% CaCl2, the porosity of the prepared PMIA ultrafiltration membrane was as high as 73.7%, the pure water flux was 16 970 L/(m2·h·MPa), and the retention rate of 150 000 glucan and BSA were 90.5% and 98.9%, respectively. The prepared PMIA ultrafiltration membranes show a good application prospect.

基金项目:
云南省“兴滇英才支持计划”产业创新人才项目和云南中烟科技项目(2021JC04)

作者简介:
刘春波(1978-),男,内蒙古赤峰人,副研究员,硕士,研究方向为纳米材料与膜材料.*通讯作者,冯欣,E-mail:3835732@qq.com; 李琳,E-mail:lilin121@dlut.edu.cn

参考文献:
 [1]邓麦村, 金万勤. 膜技术手册\[M\]//北京: 化学工业出版社, 2020.
\[2\]Zeman. Microfiltration and ultrafiltration\[M\]//Taylor and Francis, 2017.
\[3\]Staszak K, Wieszczycka K, Tylkowski B. Membrane technologies:From academia to industry\[M\]//De Gruyter, 2022.
\[4\]Kamal A, Makhatova A, Yergali B, et al. Biological treatment, advanced oxidation and membrane separation for landfill leachate treatment: A review\[J\]. Sustainability, 2022, 14(21): 14427.
\[5\]Ma C, Huang H, Gu J, et al. Polymer separation membrane materials and their research progress\[J\]. Mater Rev, 2016, 30(5):144-150.
\[6\]Zhang Z, Wang S, Chen H, et al. Preparation of polyamide membranes with improved chlorine resistance by bis2,6N,N(2hydroxyethyl) diaminotoluene and trimesoyl chloride\[J\]. Desalination, 2013, 331(24): 16-25.
\[7\]Huang J, Zhang K. The high flux poly(mphenylene isophthalamide) nanofiltration membrane for dye purification and desalination\[J\]. Desalination. 2011, 282: 19-26.
\[8\]司会芳. 芳香族聚酰胺耐溶剂纳滤膜的制备及性能研究\[D\].大连:大连理工大学, 2018.
\[9\]司会芳, 李琳, 杨文华, 等. 聚间苯二甲酰间苯二胺超滤膜的制备与性能研究\[J\]. 膜科学与技术, 2018, 38(4): 49-55.
\[10\]张冉, 王磊, 司会芳,等. PA/PMIA复合纳滤膜的制备及性能研究\[J\]. 膜科学与技术, 2023, 43(4): 129-135.
\[11\]Wang T, Zhao C, Li P, et al. Effect of nonsolvent additives on the morphology and separation performance of poly(mphenylene isophthalamide) (PMIA) hollow fiber nanofiltration membrane\[J\]. Desalination. 2015, 365: 293-307.
\[12\]Lin C, Wang J, Zhou M, et al. Poly(mphenylene isophthalamide) (PMIA): A potential polymer for breaking through the selectivitypermeability tradeoff for ultrafiltration membranes\[J\]. J Membr Sci, 2016, 518: 72-78.
\[13\]Chen M, Xiao C, Wang C, et al. Studies on structure and properties of poly(mphenylene isophthalamide) hollow fiber membranes\[J\]. Acta Polym Sin, 2016(4): 428-435.
\[14\]Vetrivel S, Rana D, Sri Abirami S M S, et al. Cellulose acetate nanocomposite ultrafiltration membranes tailored with hydrous manganese dioxide nanoparticles for water treatment applications\[J\]. Polym Adv Technol, 2019, 30(8): 1943-1950.
\[15\]Jiang L, Yun J, Wang Y, et al. High-flux, antifouling dendrimer grafted PAN membrane: Fabrication, performance and mechanisms\[J\]. J Membr Sci, 2020, 596: 117743.
\[16\]Khan S A, Rehan Z A, Alharthi S S, et al. Polyethersulphone coated AgSiO2 nanoparticles: A multifunctional and ultrafiltration membrane with improved performance\[J\]. Desalin Water Treat, 2021, 239: 217-227.
\[17\]Wen X, He C, Hai Y, et al. Fabrication of a hybrid ultrafiltration membrane based on MoS2 modified with  dopamine and polyethyleneimine\[J\]. RSC Adv, 2021, 11(42): 26391-26402.
\[18\]Jiang Q, Zhang K. Preparation and characterization of highflux poly(m-phenylene isophthalamide) (PMIA) hollow fiber ultrafiltration membrane\[J\]. Desalin Water Treat, 2019, 138: 80-90.
\[19\]Karunakaran M, Nunes S P, Qiu X, et al. Isoporous PSbPEO ultrafiltration membranes via selfassembly and water-induced phase separation\[J\]. J Membr Sci, 2014, 453: 471-477.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号