多羟基单体调控分离层结构制备高性能净水用纳滤膜 |
作者:鲁艺文1,2, 吕晓龙1,2, 任凯1,2, 陈向上1, 张慧莹1,2, 刘慧丽1, 王晨宇1,2 |
单位: 1. 省部共建分离膜与膜过程国家重点实验室,材料科学与工程学院, 生物化工研究所,天津工业大学 2. 膜材料与膜应用国家重点实验室,天津膜天膜科技股份有限公司 |
关键词: 纳滤; BIS-TRIS; 饮用水处理; 去除微污染物; 调控膜孔径 |
DOI号: 10.16159/j.cnki.issn1007-8924.2024.05.013 |
分类号: TQ028.8 |
出版年,卷(期):页码: 2024,44(5):108-116 |
摘要: |
为了制备高效净化水中微污染物的纳滤膜,在哌嗪(PIP)水相溶液中混入小分子的多羟基第二单体双(2-羟乙基)氨基(三羟甲基)甲烷(BIS-TRIS),两者同时与均苯三甲酰氯(TMC)发生聚合反应,利用BISTRIS的羟基与PIP的氨基产生竞争作用来调控纳滤膜的分离层结构,制备净水用纳滤膜.采用傅里叶红外光谱与Zeta电位研究了膜的化学结构及表面荷电性,并对膜的分离性能与抗污染性能进行了表征.结果表明,与纯PIP和TMC制备的聚酰胺膜相比,BIS-TRIS的加入将膜孔径分布从0.3~0.9 nm提升至0.4~1.0 nm,成膜截留分子量从223提高到267,分离层厚度由135 nm减小到115 nm,渗透通量从93.6 L/(m2·h·MPa)增加为220 L/(m2·h·MPa),Na2SO4截留率由最初的95.6%提升至98%,盐酸四环素截留率由94%提升至98.4%,并且膜的抗污染性能进一步得到改善.本研究提出利用水相溶液中羟基、氨基与TMC的竞争交联作用来调控分离层结构,为高效去除水中微污染物的纳滤膜制备提供了简便的策略. |
In order to prepare a nanofiltration membrane for efficient purification of micropollutants in water, in this study, a small molecule of polyhydroxyl second monomer bis(2-ydroxyethyl)amino(trimethyl)methane (BIS-TRIS) was mixed into piperazine (PIP) aqueous solution, and the two were polymerized with homobenzesulfyl chloride (TMC) at the same time. Fourier transform infrared spectroscopy and zeta potential were used to study the chemical structure and surface chargeability of the membrane, and the separation performance and antifouling performance of the membrane were characterized. The results showed that compared with the polyamide membranes prepared by pure PIP and TMC, the addition of BIS-TRIS increased the pore size distribution of the membrane from 0.3~0.9 nm to 0.4~1.0 nm, the molecular weight cutoff of the film from 223 to 267, and the permeation flux from 93.6 to 220 L/(m2·h·MPa), the rejection rate of Na2SO4 increased from 95.6% to 98%, and the rejection rate of tetracycline hydrochloride increased from 94% to 98.4%, and the antifouling performance of the membrane was further improved. In this study, it was proposed to use the competitive crosslinking of hydroxyl groups, amino groups and TMCs in the aqueous solution to regulate the structure of the separation layer, which provided a convenient strategy for the preparation of nanofiltration membranes for the efficient removal of micropollutants in water. |
基金项目: |
国家重点研发计划“高端功能与智能材料”重点专项(2023YFB3810500) |
作者简介: |
鲁艺文(1998-),女,河南商丘人,硕士生,从事纳滤膜制备.*通讯作者,E-mail:13920286131@163.com |
参考文献: |
[1]He C, Liu Z, Wu J, et al. Future global urban water scarcity and potential solutions\[J\]. Nat Commun, 2021, 12(1):4667. \[2\]Li R, Kadrispahic H, Koustrup J M, et al. Removal of micropollutants in a ceramic membrane bioreactor for the posttreatment of municipal wastewater\[J\]. Chem Eng J, 2022, 427:131458. \[3\]Morincrini N, Lichtfouse E, Fourmentin M, et al. Removal of emerging contaminants from wastewater using advanced treatments. A review\[J\]. Environ Chem Lett, 2022, 20(2):1333-1375. \[4\]Xu R, Zhou M, Wang H, et al. Influences of temperature on the retention of PPCPs by nanofiltration membranes: Experiments and modeling assessment\[J\]. J Membr Sci, 2020, 599:117817. \[5\]Lyu Y, Xia J, Yang Y, et al. Thin-film composite membranes with mineralized nanofiber supports for highly efficient nanofiltration\[J\]. Compos Commun, 2021, 24:100695. \[6\]Liu M, Zhou C, Dong B, et al. Enhancing the permselectivity of thin-film composite poly(vinyl alcohol) (PVA) nanofiltration membrane by incorporating poly(sodium-p-styrene-sulfonate) (PSSNa)\[J\]. J Membr Sci, 2014, 463:173-182. \[7\]Ba C, Economy J. Preparation and characterization of a neutrally charged antifouling nanofiltration membrane by coating a layer of sulfonated poly(ether ether ketone) on a positively charged nanofiltration membrane\[J\]. J Membr Sci, 2010, 362(1/2):192-201. \[8\]Guo Y S, Ji Y L, Wu B, et al. Highflux zwitterionic nanofiltration membrane constructed by in-situ introduction method for monovalent salt/antibiotics separation\[J\]. J Membr Sci, 2020, 593:117441. \[9\]Guo X, Zhao B, Wang L, et al. High flux nanofiltration membrane via surface modification using spirocyclic quaternary ammonium diamine for efficient antibiotics/salt separation\[J\]. Sep Purif Technol, 2023, 325:124736. \[10\]Zhao F Y, Ji Y L, Weng X D, et al. Highflux positively charged nanocomposite nanofiltration membranes filled with poly(dopamine) modified multiwall carbon nanotubes\[J\]. ACS Appl Mater Interfaces, 2016, 8(10):6693-6700. \[11\]Guo Y S, Mi Y F, Zhao F Y, et al. Zwitterions functionalized multi-walled carbon nanotubes/polyamide hybrid nanofiltration membranes for monovalent/divalent salts separation\[J\]. Sep Purif Technol, 2018, 206:59-68. \[12\]Shen J N, Yu C C, Ruan H M, et al. Preparation and characterization of thinfilm nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization\[J\]. J Membr Sci, 2013, 442:18-26. \[13\]Peydayesh M, Mohammadi T, Bakhtiari O. Effective treatment of dye wastewater via positively charged TETAMWCNT/PES hybrid nanofiltration membranes\[J\]. Sep Purif Technol, 2018, 194:488-502. \[14\]Lai G S, Lau W J, Goh P S, et al. Tailormade thin film nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation\[J\]. Chem Eng J, 2018, 344:524-534. \[15\]Safarpour M, Vatanpour V, Khataee A, et al. Development of a novel high flux and foulingresistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2\[J\]. Sep Purif Technol, 2015, 154:96-107. \[16\]Xie Q, Zhang S, Hong Z, et al. A novel doublemodified strategy to enhance the performance of thinfilm nanocomposite nanofiltration membranes: Incorporating functionalized graphenes into supporting and selective layers\[J\]. Chem Eng J, 2019, 368:186-201. \[17\]Jeong B H, Hoek E M V, Yan Y, et al. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes\[J\]. J Membr Sci, 2007, 294(1/2):1-7. \[18\]Zhang L, Zhang M, Lu J, et al. Highly permeable thinfilm nanocomposite membranes embedded with PDA/PEG nanocapsules as water transport channels\[J\]. J Membr Sci, 2019, 586:115-121. \[19\]Wang X, Liu Y, Fan K, et al. Utilization of carboxyl groupgrafted molybdenum disulfide for enhancing the performance of thin-film nanocomposite nanofiltration membranes\[J\]. Desalination, 2023, 548:116283. \[20\]Zhang N, Song X, Jiang H, et al. Advanced thin-film nanocomposite membranes embedded with organic-based nanomaterials for water and organic solvent purification: A review\[J\]. Sep Purif Technol, 2021, 269:118719. \[21\]An Q, Li F, Ji Y, et al. Influence of polyvinyl alcohol on the surface morphology, separation and antifouling performance of the composite polyamide nanofiltration membranes\[J\]. J Membr Sci, 2011, 367(1/2): 158-165. \[22\]Tang Y, Zhang L, Shan C, et al. Enhancing the permeance and antifouling properties of thin-film composite nanofiltration membranes modified with hydrophilic capsaicinmimic moieties\[J\]. J Membr Sci, 2020, 610: 118233. \[23\]Zhang T, Zhang H, Li P, et al. Highly permeable composite nanofiltration membrane via γ-cyclodextrin modulation for multiple applications\[J\]. Sep Purif Technol, 2022, 297:121541. \[24\]Ding J, Wu H, Wu P. Preparation of highly permeable loose nanofiltration membranes using sulfonated polyethylenimine for effective dye/salt fractionation\[J\]. Chem Eng J, 2020, 396:125199. \[25\]Lin J, Ye W, Baltaru M C, et al. Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment\[J\]. J Membr Sci, 2016, 514:217-228. \[26\]Ma X H, Yao Z K, Yang Z, et al. Nanofoaming of polyamide desalination membranes to tune permeability and selectivity\[J\]. Environ Sci Technol Lett, 2018, 5(2): 123-130. \[27\]Xue J, Jiao Z, Bi R, et al. Chlorine-resistant polyester thin film composite nanofiltration membranes prepared with β-cyclodextrin\[J\]. J Membr Sci, 2019, 584:282-289. \[28\]Jin P, Zhu J, Yuan S, et al. Erythritol-based polyester loose nanofiltration membrane with fast water transport for efficient dye/salt separation\[J\]. Chem Eng J, 2021, 406:126796. \[29\]Wang M, Li M, Ren Z, et al. Novel macrocyclic polyamines regulated nanofiltration membranes: Towards efficient micropollutants removal and molecular separation\[J\]. J Membr Sci, 2023, 668:121180. \[30\]李明慧. 基于糖苷类物质构建低压复合纳滤膜及其分离性能研究\[D\]. 无锡:江南大学,2021. \[31\]Wang Z, Guo S, Zhang B, et al. Hydrophilic polymers of intrinsic microporosity as water transport nanochannels of highly permeable thinfilm nanocomposite membranes used for antibiotic desalination\[J\]. J Membr Sci, 2019, 592: 117375. \[32\]Guan J, Fan L, Liu Y N, et al. Incorporating arginineFeIII complex into polyamide membranes for enhanced water permeance and antifouling performance\[J\]. J Membr Sci, 2020, 602:117980. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号