渗透汽化膜过程乙醇水蒸气真空分馏热质传递
作者:张尹, 王丁玎, 刘敬芸, 刘闻达, 姜昊基, 韩露, 肖泽仪, 樊森清
单位: 四川大学 化学工程学院
关键词: 渗透汽化; 乙醇水蒸气; 真空分馏; 传质; 传热
DOI号: 10.16159/j.cnki.issn1007-8924.2024.05.017
分类号: TQ026.2
出版年,卷(期):页码: 2024,44(5):142-149

摘要:
 对透醇选择性渗透汽化膜下游的渗透蒸气进行分级冷凝,重点研究了真空冷凝分馏器的热质传递行为,分析了进口渗透蒸气流速对真空冷凝分馏器传热系数与冷凝行为的影响.进口蒸气流速从3.09 m/s提高至8.05 m/s时,总传热系数由37.06 W/(m2·K)提高至145.27 W/(m2·K),渗透蒸气侧冷凝给热系数也由55.81 W/(m2·K)提高至544.60 W/(m2·K).不同流速下,传热过程各步骤热阻占比不同,3.09 m/s时,渗透蒸气侧热阻占比较大,高达82.99%;流速提高至8.05 m/s后,冷却介质侧热阻占比增大,达到65.66%.随进口蒸气流速的提高,真空冷凝分馏器中蒸气冷凝量在总渗透蒸气中的占比由41.82%提高至68.19%,乙醇质量分数由3.45%提高到10.66%.
 
  Fractional condensation process was used to recover the permeate ethanolwater vapor downstream the pervaporation membrane under vacuum. The heat transfer and mass transfer behavior of the vacuum condensation dephlegmator was stressed. The effects of inlet vapor flow rate on the heat transfer coefficient and condensation behavior of the vacuum condensation dephlegmator were analyzed. When the inlet vapor flowing velocity was increased from 3.09  to 8.05 m/s, the heat transfer process was effectively intensified. The total heat transfer coefficient was increased from 37.06  to 145.27 W/(m2·K), with the vapor side condensing heat transfer coefficient also increasing from 55.81  to 544.60 W/(m2·K). At different flowing velocity, the proportion of thermal resistance in the heat transfer process varied. At low vapor flowing velocity, the vapor side thermal resistance was relatively high, reaching up to 82.99%. After the flow rate increased, the proportion of thermal resistance on the cooling medium side was increased, reaching up to 65.66%. With the increase in feed flowing velocity, the recovery proportion of ethanolwater vapor in the vacuum condensation dephlegmator was improved from 41.82% to 68.19%, with the ethanol recovery proportion increasing from 5.21% to 30.72%. The ethanol mass fraction in the first condensate was also increased from 3.45% to 10.66%.  
 

基金项目:
国家重点研发计划课题(2021YFC2101204);中央高校基本科研业务费(20822041B4013和2023SCU12080)

作者简介:
张尹(1998-),男,四川凉山人,硕士生,研究方向为膜过程设备设计.*通讯作者,E-mail:fansenqing86@scu.edu.cn

参考文献:
 [1]Aditiya H B, Mahlia T M I,Chong W T, et al. Second generation bioethanol production: A critical review\[J\]. Renew Sust Energ Rev, 2016, 66:631-653.
\[2\]Sánchez O J, Cardona C A. Trends in biotechnological production of fuel ethanol from different feedstocks\[J\]. Bioresource Technol, 2008, 99:5270-5295.
\[3\]Cardona C A, Sánchez O J. Fuel ethanol production: Process design trends and integration opportunities\[J\]. Bioresource Technol, 2007, 98:2415-2457.
\[4\]Cao Z Q,Xia  C J,  Jia W, et al. Enhancing bioethanol productivity by a yeast-immobilized catalytically active membrane in a fermentation-pervaporation coupling process\[J\]. J Membr Sci, 2020, 595:117485.
\[5\]Jiang H J, Liu J Y, Liu W D, et al. Bioethanol production from cassava fermentation in pervaporation membrane bioreactor fed with high concentration sugar\[J\]. Fuel, 2024, 362:130744.
\[6\]Qiu B Y, Wang Y Y, Fan S Q, et al. Ethanol mass transfer during pervaporation with PDMS membrane based on solution-diffusion model considering concentration polarization\[J\]. Sep Purif Technol, 2019, 220:276-282.
\[7\]Zentou H, Abidin Z Z, Issa M A, et al. Developing an integrated mathematical model of fermentationpervaporation system for bioethanol production\[J\]. Chem Eng J, 2023, 473:145229.
\[8\]O’Brien D J, Roth L H, McAloon A J. Ethanol production by continuous fermentationpervaporation: A preliminary economic analysis\[J\]. J Membr Sci, 2000, 166:105-111.
\[9\]Cai D, Hu S, Chen C J, et al. Immobilized ethanol fermentation coupled to pervaporation with silicalite1/polydimethylsiloxane/polyvinylidene fluoride composite membrane\[J\]. Bioresource Technol, 2016, 220:124-131.
\[10\]Fan S Q, Xiao Z Y, Li M H, et al. Pervaporation membrane bioreactor with permeate fractional condensation and mechanical vapor compression for energy efficient ethanol production\[J\]. Appl Energ, 2016, 179:939-947.
\[11\]Li J F, Zhou W C, Fan S Q, et al. Bioethanol production in vacuum membrane distillation bioreactor by permeate fractional condensation and mechanical vapor compression with polytetrafluoroethylene (PTFE) membrane\[J\]. Bioresource Technol, 2018, 268:708-714.
\[12\]Fan S Q, Liu J F, Tang X Y, et al. Process operation performance of PDMS membrane pervaporation coupled with fermentation for efficient bioethanol production\[J\]. Chin J Chem Eng, 2019, 27:1339-1347.
\[13\]Li L,  Xiao Z Y, Tan S J, et al. Composite PDMS membrane with high flux for the separation of organics from water by pervaporation\[J\]. J Membrane Sci, 2004, 243:177-187.
\[14\]耿少航, 党建军, 赵佳,等. 高压下含大比例不凝气体的水蒸气对流冷凝数值仿真\[J\]. 水下无人系统学报, 2021, 29:88-96.
\[15\]Wang J S,  Yan J J ,  Li Y, et al. Experimental investigation of marangoni condensation of ethanol-water mixture vapors on vertical tube\[J\]. Heat Mass Transfer, 2009, 45:1533-1541.
\[16\]Lips S, Meyer J P. Twophase flow in inclined tubes with specific reference to condensation: A review\[J\]. Int J Multiphas Flow, 2011, 37:845-859.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号