中间层构建及其反渗透复合膜性能的探讨
作者:李文远1, 吕晓龙12, 任凯1, 谷杰1, 张慧莹1
单位: 1. 省部共建分离膜与膜过程国家重点实验室, 材料科学与工程学院, 生物化工研究所, 天津工业大学 2. 膜材料与膜应用国家重点实验室, 天津膜天膜科技股份有限公司
关键词: 反渗透膜; 界面聚合; 膜通量; 中间层
DOI号: 10.16159/j.cnki.issn1007-8924.2024.05.018
分类号: TQ028.8
出版年,卷(期):页码: 2024,44(5):150-155

摘要:
 自制了聚氯乙烯(PVC)超滤基膜,通过多元胺(二乙烯三胺-DETA和哌嗪-PIP)和多元酸(衣康酸-IA、马来酸酐-MAH和柠檬酸-CA)反应形成了基膜表面中间层,采用间苯二胺(MPD)和均苯三甲酰氯(TMC)界面聚合(IP)制备了反渗透(RO)复合膜,讨论了多元胺/多元酸种类(DETA/CA,DETA/MAH,DETA/IA,PIP/IA)、反应次数等对中间层性能和RO膜性能的影响.结果表明,当50 ℃时,利用3 mol/L二乙烯三胺和0.5 mol/L衣康酸在基膜表面反应4次的中间层所制备的RO复合膜,在2.0 MPa压力下对质量浓度1 800 mg/L的氯化钠水溶液脱盐率为97.58%,其水通量为34.8 L/(m2·h·MPa),与空白对照RO膜相比水通量提升41.3%,因此,这种中间层构建的方法为高通量RO复合膜的制备提供了理论依据.
 
  In this paper, polyvinyl chloride (PVC) ultrafiltration base membrane was prepared, and through the reaction of polyamines (diethylenetriamine-DETA and piperazine-PIP) and polyacids (itaconic acid-IA, maleic anhydride-MAH and citric acid-CA), intermediate layer of base membrane surface was formed, reverse osmosis (RO) composite membrane was prepared by interfacial polymerization (IP) of m-phenylenediamine (MPD) and trimesoyl chloride (TMC) and the effects of DETA/IA reaction times of polyamines/polyacids (DETA/CA, DETA/MAH, DETA/IA and PIP/IA) on the properties of interlayer and RO film were discussed. It is shown from the result that, at 50 ℃, for the RO composite membrane prepared by 3 mol/L diethylenetriamine and 0.5 mol/L itaconic acid through reaction for 4 times on the surface of the base membrane, the desalination rate for 1 800 mg/L sodium chloride water solution was 97.58% at 2.0 MPa pressure and water flux was 34.8 L/(m2·h·MPa). Compared with the blank control RO membrane, the water flux increased by 41.3%. Therefore, the method of constructing intermediate layer provides a theoretical basis for the preparation of high-flux RO composite membranes. 
 

基金项目:
国家重点研发计划( 2023YFB3810500)

作者简介:
李文远(1998-),男,天津市人,硕士生,研究方向为分离膜制备与应用.*通讯作者,E-mail:13920286131@163.com

参考文献:
 [1]吕晓龙,杜启云.新型反渗透复合膜\[J\].水处理技术,1989(5):16-21.
\[2\]吕晓龙,武春瑞,张昊,等.NIPS法聚偏氟乙烯超滤膜的制备与应用\[J\].中国工程科学,2014,16(12):35-45.
\[3\]Wang J J, Yang H C, Wu M B, et al. Correction: Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance\[J\]. J Mater Chem A,2018,5:16289-16295. 
\[4\]Karan S,Jiang Z,Livingston A G. Sub10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation\[J\]. Science, 2015, 348(6241):1347-1351.
\[5\]Wang M, Dong W, Guo Y,et al.Positively charged nanofiltration membranes mediated by a facile polyethyleneimine-Noria interlayer deposition strategy\[J\].Desalination, 2021,513:114836.
\[6\]Zhao W, Liu H, Liu Y, et al. Thin-film nanocomposite forward-osmosis membranes on hydrophilic microfiltration support with an intermediate layer of graphene oxide and multiwall carbon nanotube\[J\]. ACS Appl Mater Interfaces, 2018, 10(40):34464-34474.
\[7\]王晨霞,杨庆,陈欣,等.芳香聚酰胺反渗透复合膜界面聚合影响因素分析\[J\].应用化工,2021,50(4):1056-1059.
\[8\]赵岩雨,张瑜,宋向菊,等.中间层调控聚酰胺复合膜的研究进展\[J\].膜科学与技术, 2021, 41(6):226-235.
\[9\]刘治宇. 套管式气隙膜蒸馏组件设计与实验研究\[D\]. 天津: 天津工业大学,2018.
\[10\]Ma R H, Lu X L, Wu C R, et al. Performance design of a highly anti-fouling porous membrane with dual pHresponsiveness\[J\]. J Membr Sci, 2022,660: 120886.
\[11\]谢颂京. 复合反渗透膜的制备研究\[D\]. 天津:天津工业大学, 2017.
\[12\]张文才. 高效聚酰胺复合反渗透膜的制备及性能研究\[D\].北京:北京化工大学,2020.
\[13\]Chien N Z,Jye L W,  Chun W K,et al.Improving properties of thin film nanocomposite membrane through polyethyleneimine intermediate layer: A parametric study\[J\].Sep Purif Technol, 2021, 274:119035.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号