天然气膜法脱碳中节流降温及重烃污染研究
作者:李立鑫12, 宋曦智3, 王常春2, 车如心1, 于海军2, 王丽娜2, 刘健辉2, 许国辉2, 康国栋2, 曹义鸣2, 介兴明2
单位: 1. 大连交通大学 材料科学与工程学院,大连 116023; 2. 中国科学院大连化学物理研究所,大连 116023; 3. 南京工业大学 机械与动力工程学院, 南京 211816
关键词: 天然气脱碳; 聚酰亚胺膜; Joule-Thomson效应; 节流降温; 重烃污染
DOI号: 10.16159/j.cnki.issn1007-8924.2025.01.001
分类号: TQ028.8
出版年,卷(期):页码: 2025,45(1):1-10

摘要:
?膜法天然气脱碳过程中CO2从高压侧向低压侧大量渗透会形成Joule-Thomson效应而导致气体节流渗透降温现象的发生,同时所含重烃组分因浓度升高和降温导致的饱和蒸汽压降低等原因会对分离膜产生不同程度的污染,极端情况下甚至会直接导致膜组件失去分离性能.实验采用自制的聚酰亚胺中空纤维膜组件,研究了不同浓度CO2/N2混合气、进气压力、放空比等参数对气体节流渗透降温规律的影响,并考察了聚酰亚胺中空纤维膜在甲苯、正庚烷污染下膜组件分离性能的变化.实验结果表明,混合气中CO2浓度、进气压力、放空比的增大,均会加剧膜组件内的温降程度;分离膜被甲苯污染后气体渗透速率增大,被正庚烷污染后气体渗透速率下降,但气体选择性均下降.高温真空处理可以一定程度上消除污染的影响,部分恢复分离膜的性能.
 
In the process of membrane based natural gas decarbonization, a large amount of CO2 permeates from the high-pressure side to the low-pressure side, which will form the Joule-Thomson effect, and then leads to the occurrence of gas throttling permeation cooling phenomenon. Meantime, the heavy hydrocarbon components contained in it will cause varying degrees of contamination to the separation membrane due to the increase in concentration and the decrease in saturated vapor pressure caused by cooling. In extreme cases, it may even directly cause the membrane module to lose its separation performance. The experiment used self-made polyimide hollow fiber membrane modules to study the effects of different concentrations of CO2/N2 mixture, inlet pressure, and vent ratio on gas throttling permeation cooling law, and investigated the changes in membrane module separation performance of polyimide hollow fiber membranes under toluene and n-hexane contamination. The experimental results indicate that an increase in CO2 concentration, intake pressure, and venting ratio in the mixed gas will exacerbate the degree of temperature drop inside the membrane module. The gas permeation rate increases when the separation membrane is contaminated with toluene, and decreases when it is contaminated with n-hexane, but the gas selectivity decreases for both situation. High temperature vacuum treatment can eliminate the impact of contamination to some extent and partially restore the performance of the separation membrane.
 

基金项目:
国家自然科学基金项目(22178333, 22178334); 大连市重点学科重大课题研究项目(2022JJ11CG006); 榆林中科洁净能源创新研究院能源革命科技专项联合基金项目(E411080316)

作者简介:
李立鑫(2000-),男,辽宁大连人,硕士生,主要研究方向为膜分离技术.

参考文献:
[1]高振宇, 赫曼求, 杨飞,等. “双碳”目标下中国天然气发展的分析与建议[J]. 油气与新能源, 2023, 35(4):7-11.
[2]陈彦, 刘潇. “双碳”背景下中国海油天然气产业面临的挑战与发展建议[J]. 中国海上油气, 2022, 34(3):180-184.
[3]天工. 《中国天然气发展报告(2021)》发布[J]. 天然气工业, 2021, 41(8):68.
[4]严硕, 于海斌, 陈赞. 膜法脱除天然气中二氧化碳的工艺技术发展现状[J]. 无机盐工业, 2022, 54(5):38-46.
[5]胡苏阳,  花亦怀,  李秋英,等. 天然气膜分离脱碳技术评述[J]. 石化技术, 2021, 28(5):54-55.
[6]Omole I C, Adams R T, Miller S J, et al. Effects of CO2 on a high performance hollow-fiber membrane for natural gas purification[J]. Ind Eng Chem Res, 2010, 49(10): 4887-4896.
[7]Baker R W, Low B T. Gas separation membrane materials: A perspective[J]. Macromolecules, 2014, 47(20): 6999-7013.
[8]罗双江, 白璐, 单玲珑,等. 膜法二氧化碳分离技术研究进展及展望[J]. 中国电机工程学报, 2021, 41(4):1209-1216.
[9]Alghunaimi F, Ghanem B, Alaslai N, et al. Triptycene dimethyl-bridgehead dianhydride-based intrinsically microporous hydroxyl-functionalized polyimide for natural gas upgrading[J]. J Membr Sci, 2016, 520: 240-246.
[10]Adewole J K, Ahmad A L. Polymeric membrane materials selection for high-pressure CO2 removal from natural gas[J]. J Polym Res, 2017, 24: 1-13.
[11]Jie X, Duan C, Wang L, et al. Fabrication of an asymmetric 4, 4′-oxydiphthalic anhydride-2, 4, 6-trimethyl-1, 3-phenylenediamine/2, 6-diaminotoluene copolyimide hollow fiber membrane and its performance for CO2 separation[J]. Ind Eng Chem Res, 2014, 53(11): 4442-4452.
[12]付越, 徐义恒, 段军,等. 海上天然气吸附净化脱CO2的动态穿透实验研究[J]. 石油化工高等学校学报, 2022, 35(4):26-32.
[13]Ahmad F, Lau K K, Shariff A M, et al. The study of Joule Thompson effect for the removal of CO2 from natural gas by membrane process[J]. Int J Chem Environ Eng, 2012, 3(2): 115-118.
[14]赵霄, 孟文惠, 宋鹏,等. 混合组分高压气体节流效应的理论及实验研究[J]. 节能, 2017, 36(5):18-21.
[15]邓成香, 宋鹏云, 马爱琳. 干气密封的实际气体焦耳-汤姆逊效应分析[J]. 化工学报, 2016, 67(9):3833-3842.
[16]郑成明, 郭昊, 刘向阳,等. 海上平台燃料气重烃脱除工艺研究[J]. 石化技术, 2018, 25(4):146-148.
[17]贝鹏志.[NH2ebim][PF6]改性聚酰亚胺膜的制备及CO2/N2分离性能的研究[D].沈阳:沈阳工业大学, 2020.
[18]王常春, 赵琦, 丛玉凤,等. 天然气膜法脱碳过程中节流降温行为的研究[J]. 膜科学与技术, 2023, 43(3):22-29.
[19]吕红岩. 天然气膜法脱碳技术应用研究[J]. 石油和化工设备, 2018, 21(5):19-22.
[20]Dal-Cin M, Darcovich K, Saimani S, et al. Gas separation transport modeling for PDMS coatings on PEI-PEG IPN membranes[J]. J Membr Sci, 2010, 361(1/2): 176-181.
[21]张旭, 孟令鹏, 李培. 提高硅橡胶的粘附性制备多层复合膜[J]. 膜科学与技术, 2020, 40(6):37-43.
[22]Nemestothy N, Bakonyi P, Lajtai-Szabó P, et al. The impact of various natural gas contaminant exposures on CO2/CH4 separation by a polyimide membrane[J]. Membranes, 2020, 10(11): 324.
[23]俞娟, 蒋远媛, 王晓东,等. 高温热处理对聚酰亚胺前驱体凝胶膜性能的影响[J]. 材料工程, 2009(8):80-83.
[24]Al-Juaied M, Koros W J. Performance of natural gas membranes in the presence of heavy hydrocarbons[J]. J Membr Sci, 2006, 274(1/2): 227-243.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号