β-CD改性PVD-FHFP复合聚乙烯凝胶聚合物电解质的性能 |
作者:李明晔1 , 李钒1 , 周敬源2, 郭红霞1 |
单位: 1. 北京工业大学 材料科学与工程学院, 北京 100124; 2. 江苏北星新材料科技有限公司, 常州 213300 |
关键词: 聚烯烃隔膜; 聚偏氟乙烯-六氟丙烯共聚物; β-环糊精; 凝胶聚合物电解质 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.01.002 |
分类号: TM911.3; TQ028 |
出版年,卷(期):页码: 2025,45(1):11-19 |
摘要: |
采用溶液浇铸法将含β-环糊精(β-CD)添加剂的聚偏氟乙烯-六氟丙烯(PVDF-HFP)浇涂于预处理的聚乙烯(PE)基体上,制备了PVDF-HFP/β-CD@PE复合凝胶聚合物电解质.利用SEM、FTIR、交流阻抗法、计时电流法等对凝胶聚合物电解质膜的表面形貌、结构等物理和电化学性能进行表征,探究了不同β-CD添加量对PVDF-HFP/β-CD@PE复合凝胶聚合物电解质的结构与电化学性能的影响.结果表明,当β-CD添加质量分数为5.0% 时,得到的复合凝胶聚合物电解质的离子电导率、锂离子迁移数和电化学稳定窗口分别为4.85×10-4 S/cm、0.77和5.2 V(vs Li+/Li),以其组装的Li||LiFePO4电池的放电比容量为160.4 mAh/g,循环150圈仍保持稳定. |
PVDF-HFP/β-CD@PE composite gel polymer electrolyte (PH/β@PE) was prepared by solution casting method, with surfactant treated polyethylene (PE) membrane as substrate, poly(vinylidenefluoride-co-hexafluoropropylene)(PVDF-HFP) as the modified layer and β-cyclodextrin (β-CD) as an additive. The surface morphology, structure and electrochemical properties of gel polymer electrolyte membrane were characterized by SEM, FTIR, AC impedance and chronoamperometry. The effect of different β-CD amount on the ion transport performance of the electrolyte were investigated. The results indicate that the hydroxyl groups on the surface of β-CD can form hydrogen bonds with polyvinylidene fluoride copolymers, leading to physical cross-linking. Additionally, its macrocyclic structure can effectively immobilize anions as well as promote lithium ion migration. When the mass fraction of β-CD was 5.0%, the prepared PH/β@PE composite gel polymer electrolyte exhibited ion conductivity of 4.85×10-4 S/cm, lithium transference number of 0.77, and electrochemical stability window of 5.2 V(vs Li+/Li). The assembled Li||PH/β@PE-3||LFP battery has a discharge specific capacity of 160.4 mAh/g after 150 cycles. |
基金项目: |
国家自然科学基金面上项目 (22178007) |
作者简介: |
李明晔(1999-),女,北京市平谷人,博士生,研究方向为锂电池电解质膜及其性能. |
参考文献: |
[1]Zhou S, Huang P, Xiong T, et al. Sub-thick electrodes with enhanced transport kinetics via in situ epitaxial heterogeneous interfaces for high areal-capacity lithium ion batteries[J]. Small, 2021, 17(26): 2100778. [2]Huang Y, Yang H, Xiong T, et al. Adsorption energy engineering of nickel oxide hybrid nanosheets for high areal capacity flexible lithium-ion batteries[J]. Energy Storage Mater, 2020, 25: 41-51. [3]Yang Y, Wang W, Meng G, et al. Function-directed design of battery separators based on microporous polyolefin membranes[J]. J Mater Chem A, 2022, 10(27): 14137-14170. [4]Liu Y, Zhang Z, Du X, et al. Poly(ether ether ketone) conferred polyolefin separators with high dimensional thermal stability for lithium-ion batteries[J] . ACS Appl Mater Interfaces, 2023, 15(31): 37354-37360. [5]Zhang S S, Fan X, Wang C. Preventing lithium dendrite-related electrical shorting in rechargeable batteries by coating separator with a Li-killing additive[J]. J Mater Chem A, 2018, 6(23): 10755-10760. [6]Huang Z, Chen Y, Han Q, et al. Vapor-induced phase inversion of poly (m-phenylene isophthalamide) modified polyethylene separator for high-performance lithium-ion batteries[J]. Chem Eng J, 2022, 429: 132429. [7]Dai J, Shi C, Li C, et al. A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine-ceramic composite modification of polyolefin membranes[J]. Energy Environ Sci, 2016, 9(10): 3252-3261. [8]Chi M, Shi L, Wang Z, et al. Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators[J]. Nano Energy, 2016, 28: 1-11. [9]Zuo X, Wu J, Ma X, et al. A poly(vinylidene fluoride)/ethyl cellulose and amino-functionalized nano-SiO2 composite coated separator for 5 V high-voltage lithium-ion batteries with enhanced performance[J]. J Power Source, 2018, 407: 44-52. [10]Wang Y, Shi L, Zhou H, et al. Polyethylene separators modified by ultrathin hybrid films enhancing lithium ion transport performance and Li-metal anode stability[J]. Electrochim Acta, 2018, 259: 386-394. [11]Shi C, Zhang P, Chen L, et al. Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries[J]. J Power Source, 2014, 270: 547-553. [12]Zheng H, Xu G, Wu K, et al. Highly intrinsic thermally conductive electrospinning film with intermolecular interaction[J]. J Phys Chem C, 2021, 125(39): 21580-21587. [13]王丹,赵中令,于力娜,等.商品化PE隔膜PVDF-HFP改性及性能研究[C]//中国汽车工程学会年会, 2013, 4: 459-462. [14]Cheng X, Pan J, Zhao Y, et al. Gel polymer electrolytes for electrochemical energy storage[J]. Adv Energy Mater, 2017, 8(7): 1702184. [15]Zhang M Y, Li M X, Chang Z, et al. A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery[J]. Electrochim Acta, 2017, 245: 752-759. [16]左晓希,赵敏凯,南俊民.一种锂离子电池用凝胶聚合物电解质及其制备方法[P]. 中国: CN105119012A. 2015-07-16. [17]Zhai P, Yang Z, Wei Y, et al. Two-dimensional fluorinated graphene reinforced solid polymer electrolytes for high-performance solid-state lithium batteries[J]. Adv Energy Mater, 2022, 12(42): 2200967. [18]Xu D, Su J, Jin J, et al. In situ generated fireproof gel polymer electrolyte with Li 6.4 Ga 0.2 La3Zr2O12 as initiator and ion-conductive filler[J]. Adv Energy Mater, 2019, 9(25): 1900611. [19]Zheng Y, Li X, Li C Y. A novel de-coupling solid polymer electrolyte via semi-interpenetrating network for lithium metal battery[J]. Energy Storage Mater, 2020, 29: 42-51. [20] Zheng Y, Yao Y, Ou J, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chem Soc Rev, 2020, 49(23): 8790-8839. [21]Chen G, Zhang F, Zhou Z, et al. A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability[J]. Adv Energy Mater, 2018, 8(25): 1801219. [22]Chen D, Zhu M, Kang P, et al. Self-enhancing gel polymer electrolyte by in situ construction for enabling safe lithium metal battery[J]. Adv Sci, 2021, 9(4): 2103663. [23]Cai X, Ding J, Chi Z, et al. Rearrangement of ion transport path on nano-cross-linker for all-solid-state electrolyte with high room temperature ionic conductivity[J]. ACS Nano, 2021, 15(12): 20489-20503. [24]Yu L, Yu L, Liu Q, et al. Monolithic task-specific ionogel electrolyte membrane enables high performance solid-state lithium-metal batteries in wide temperature range[J]. Adv Funct Mater, 2021, 32(14): 2110653. [25]Seo J, Lee G, Hur J, et al. Mechanically interlocked polymer electrolyte with built in fast molecular shuttles for all solid state lithium batteries[J]. Adv Energy Mater, 2021, 11(44): 2102583. [26]Wang P, Liang S, Chen C, et al. Spontaneous construction of nucleophilic carbonyl-containing interphase toward ultrastable zinc-metal anodes[J]. Adv Mater, 2022, 34(33): 2202733. [27]Qu X, Guo Y, Liu X. Highly stretchable and elastic polymer electrolytes with high ionic conductivity and Li-ion transference number for high-rate lithium batteries[J]. Chin J Chem, 2022, 40(21): 2559-2567. [28]Dong W, Ye B, Cai M, et al. Superwettable high-voltage LiCoO2 for low-temperature lithium ion batteries[J]. ACS Energy Lett, 2023, 8(2): 881-888. [29]Wang H, Song J, Zhang K, et al. A strongly complexed solid polymer electrolyte enables a stable solid state high-voltage lithium metal battery[J]. Energy Environ Sci, 2022, 15(12): 5149-5158. [30]He Y, Jiang L, Chen T, et al. Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading[J]. Nat Nanotechnol, 2021, 16(10): 1113-1120. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号