基于纤维素纳米晶体界面聚合制备抗有机污染的高通量复合纳滤膜 |
作者:丰桂珍, 张火梅, 陈俊, 莫凯琳, 崔志成 |
单位: 华东交通大学 土木建筑学院 |
关键词: 纤维素纳米晶体; 界面聚合; 复合纳滤膜; 抗污染 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.01.003 |
分类号: TQ028.5 |
出版年,卷(期):页码: 2025,45(1):20-29 |
摘要: |
为改善传统聚酰胺纳滤膜的渗透分离和抗污染性能,将亲水性纤维素纳米晶体 (CNCs)通过界面聚合反应引入纳滤膜聚酰胺层,制备了抗污染的纤维素纳米晶体复合纳滤膜 (TFN-25膜).利用扫描电镜、Zeta电位等手段对TFN-25膜进行表征,并研究CNCs对纳滤膜表面形貌、结构、渗透分离和抗污染性能的影响.结果表明,TFN-25膜表面形成了球状结构, 粗糙度增大,亲水性和电负性增强;在0.4 MPa的操作压力下,TFN-25膜的纯水通量为37.73 L/(m2·h),Na2SO4截留率为96.67%;在21 h脱盐实验中保持良好的稳定性;TFN-25膜对腐殖酸、牛血清蛋白和海藻酸钠的通量恢复率分别为97.80%、85.05%和91.45%,抗污染性能有所提升. |
To enhance the permeation separation and antifouling properties of traditional polyamide nanofiltration membranes, hydrophilic cellulose nanocrystals (CNCs) were introduced into the polyamide layer of the nanofiltration membrane through interfacial polymerization, resulting in the preparation of antifouling cellulose nanocrystal composite nanofiltration membranes (TFN-25 membranes). The TFN-25 membranes were characterized using techniques such as scanning electron microscopy (SEM) and Zeta potential measurements. The impact of CNCs on the surface morphology, structure, permeation separation, and antifouling properties of the nanofiltration membranes was investigated. The results demonstrated that the surface of the TFN-25 membrane developed a spherical structure, increased roughness, enhanced hydrophilicity, and a more negative electrical charge. Under an operating pressure of 0.4 MPa, the TFN-25 membrane exhibited a pure water flux of 37.73 L/(m2·h) and a Na2SO4 rejection rate of 96.67%. It maintained good stability during a 21 hours desalination test. The flux recovery rates of the TFN-25 membrane for humic acid, bovine serum albumin, and sodium alginate were 97.80%, 85.05%, and 91.45%, respectively, indicating improved antifouling performance. |
基金项目: |
国家自然科学基金项目(51868019) |
作者简介: |
丰桂珍(1977-),女,山东潍坊人,博士,副教授,研究方向为水处理理论与技术 |
参考文献: |
[1]Li H, Chen Y, Zhang J, et al. Pilot study on nanofiltration membrane in advanced treatment of drinking water[J]. Water Sci Technol Water Sup, 2020, 20(6): 2043-2053. [2]Lebad M S, Ballot A, Vogelsang C, et al. Removal of a cyanotoxins mixture by loose nanofiltration membranes applied in drinking water production[J]. J Water Process Eng, 2024, 57: 104694. [3]Guo X, Liu C, Feng B, et al. Evaluation of membrane fouling control for brackish water treatment using a modified polyamide composite nanofiltration membrane[J/OL]. 2023, 13(1):10.3390/membrane 13010038. [4]Li S, Bai L, Ding J, et al. Nanofiltration membranes with salt-responsive ion valves for enhanced separation performance in brackish water treatment: A battle against the limitation of salt concentration[J]. Environ Sci Technol, 2023, 57(38): 14452-14463. [5]Lee J, Shin Y, Boo C, et al. Performance, limitation, and opportunities of acid-resistant nanofiltration membranes for industrial wastewater treatment[J]. J Membr Sci, 2023, 666: 121142. [6]Premachandra A, O’Brien S, Perna N, et al. Treatment of complex multi-sourced industrial wastewater - New opportunities for nanofiltration membranes[J]. Chem Eng Res Des, 2021, 168: 499-509. [7]Solouki S, Karrabi M, Eftekhari M. Application of a functionalized thin-film composite nanofiltration membrane in water desalination[J]. J Mol Liq, 2024, 399: 124399. [8]Usman J, Yogarathinam L T, Baig N, et al. MXene-enhanced sulfonated TFN nanofiltration membranes for improved desalination performance[J]. Desalination, 2024, 581: 117566. [9]Kim S M, Hong S, Duy Nguyen B T, et al. Effect of additives during interfacial polymerization reaction for fabrication of organic solvent nanofiltration (OSN) membranes[J/OL]. 2021, 13(11): 10.3390/polym 13111716. [10]王新乐, 刘铭辉, 于海军,等. 两性离子纳滤膜的制备及抗污染性能研究[J]. 膜科学与技术, 2021, 41(6): 51-59. [11]Guo Y, Li T Y, Xiao K, et al. Key foulants and their interactive effect in organic fouling of nanofiltration membranes[J]. J Membr Sci, 2020, 610: 118252. [12]Yang Y, Chen Z, Zhang J, et al. Preparation and applications of the cellulose nanocrystal[J]. Int J Polym Sci, 2019, 2019(1): 1767028. [13]Nagarajan K J, Ramanujam N R, Sanjay M R, et al. A comprehensive review on cellulose nanocrystals and cellulose nanofibers: pretreatment, preparation, and characterization[J]. Polym Compos, 2021, 42(4): 1588-1630. [14]Huang S, Wu M B, Zhu C Y, et al. Polyamide nanofiltration membranes incorporated with cellulose nanocrystals for enhanced water flux and chlorine resistance[J]. ACS Sustain Chem Eng, 2019, 7(14): 12315-12322. [15]Bai L, Liu Y, Ding A, et al. Fabrication and characterization of thin-film composite (TFC) nanofiltration membranes incorporated with cellulose nanocrystals (CNCs) for enhanced desalination performance and dye removal[J]. Chem Eng J, 2019, 358: 1519-1528. [16]Lai C, Zhu X, Li J, et al. pH-regulated interfacially polymerized nanofiltration membranes to achieve high separation of NOM and moderate desalination for purifying ground water[J]. Desalination, 2022, 544: 116148. [17]Yu H Y, Yao J M. Reinforcing properties of bacterial polyester with different cellulose nanocrystals via modulating hydrogen bonds[J]. Compos Sci Technol, 2016, 136: 53-60. [18]Zhang H, Chen Y, Tang S, et al. Regulation of interfacial polymerization process based on reversible enamine reaction for high performance nanofiltration membrane[J]. J Membr Sci, 2022, 664: 121070. [19]Wang Y, Yang Z, Liu L, et al. Construction of high performance thin-film nanocomposite nanofiltration membrane by incorporation of hydrophobic MOF-derived nanocages[J]. Appl Surf Sci, 2021, 570: 151093. [20]Rahimi K Y, Rahbari S M, Ghadami J G A. Thin film nanocomposite nanofiltration membrane incorporated with cellulose nanocrystals with superior anti-organic fouling affinity[J].Environ Sci: Water Res Technol, 2020, 6(3): 715-723. [21]Liu L, Wu W, Jin X, et al. Interfacial polymerization on polyethersulfone ultrafiltration membrane to prepare nanofiltration layers for dye separation[J/OL]. 2023, 15(9):10.339/polym15092018. [22]Zhu Q Y, Xu Z Y, Fu J H, et al. Can the mix-charged NF membrane directly obtained by the interfacial polymerization of PIP and TMC? [J]. Desalination, 2023, 558: 116623. [23]Liu S, Wang Z, Zhao L, et al. Trger’s base-regulated interfacial polymerization of polyamide nanofiltration membranes with enhanced performance[J]. J Membr Sci, 2023, 682: 121787. [24]Tang S, Chen Y, Zhang H, et al. A novel loose nanofiltration membrane with high permeance and anti-fouling performance based on aqueous monomer piperazine-2-carboxylic acid for efficient dye/salt separation[J]. Chem Eng J, 2023, 475: 146111. [25]Fang S, Guan K, Mai Z, et al. Complexation of cellulose nanocrystals and amine monomer for improved interfacial polymerization of nanofiltration membrane[J]. J Membr Sci, 2023, 687: 122048. [26]Abedi F, Dubé M A, Emadzadeh D, et al. Improving nanofiltration performance using modified cellulose nanocrystal-based TFN membranes[J]. J Membr Sci, 2023, 670: 121369. [27]Adeniyi A, Gonzalez O D, Pochat B C, et al. Incorporation of cellulose nanocrystals (CNC) derived from sawdust into polyamide thin-film composite membranes for enhanced water recovery[J]. Alex Eng J, 2020, 59(6): 4201-4210. [28]Shang Z, An X, Seta F T, et al. Improving dispersion stability of hydrochloric acid hydrolyzed cellulose nano-crystals[J]. Carbohydr Polym, 2019, 222: 115037. [29]Li Y, Li J, Zhu D, et al. Facile dual-functionalization of NF membranes with excellent chlorine resistance and good antifouling property by in-situ grafting of zwitterions[J]. Sep Purif Technol, 2023, 315: 123660. [30]He Y, Miao J, Jiang Z, et al. Improving the anti-fouling property and permeate flux of hollow fiber composite nanofiltration membrane using β-cyclodextrin[J]. Sci Rep, 2019, 9(1): 12435. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号