Cu-Zn-Al多金属氧化物杂化炭膜制备及气体分离性能
作者:陆新元1, 庄殿铮2, 张兵1, 江园1, 王同华3, 宋恩军4
单位: 1. 沈阳工业大学 石油化工学院, 辽阳 111003; 2. 沈阳工业大学 化工装备学院, 辽阳 111003; 3. 大连理工大学 化工学院, 大连 116024; 4. 奥克控股集团股份公司, 辽阳 111003
关键词: 聚酰亚胺; 掺杂剂; 炭膜; 气体分离性能
DOI号: 10.16159/j.cnki.issn1007-8924.2025.01.005
分类号: TQ028.8
出版年,卷(期):页码: 2025,45(1):40-47

摘要:
以聚酰亚胺为前驱体,Cu-Zn-Al多金属氧化物(CZA)为掺杂剂,经成膜和炭化过程制备了气体分离杂化炭膜.分别采用热重、红外光谱、X射线衍射、扫描电子显微镜、能谱及氮吸附等技术对前驱体热稳定性、炭膜表面官能团、微观结构与形貌、掺杂剂分布及孔结构进行了表征.考察了CZA含量对炭膜气体分离性能的影响.结果显示,CZA一定程度影响了前驱体热稳定性并使炭膜微观结构趋于致密;改变CZA用量能有效调控炭膜的气体分离性能.当CZA掺杂质量分数为0.1%时,所制备的杂化炭膜分离性能最佳,H2与O2渗透系数分别达到3746.15与610.15 Barrer,H2/N2与O2/N2的选择性分别为42.8和7.0.
 
Hybrid carbon membranes for gas separation were prepared by the processes of membrane formation and carbonization using polyimide as precursor and Cu-Zn-Al (CZA) multi-metal oxides as dopant. The thermal stability of the precursors, surface functional groups, microstructure, micromorphology, surface element distribution and pore structure of carbon membranes were characterized by the techniques of thermogravimetry, infrared spectroscopy, X-ray diffraction, scanning electron microscope, energy spectroscopy and nitrogen adsorption analysis, respectively. The effect of the CZA content on the gas separation performance of carbon membranes was mainly investigated. The results showed that the introduction of CZA affected the thermal stability of the precursor to a certain extent and densified the microstructure of carbon membranes. The variation in changing the amount of CZA amount could effectively regulate the gas separation performance of the carbon membrane. The optimal separation performance of the prepared hybrid carbon membranes is achieved when the doping mass fraction of CZA was 0.1%, i.e., H2 and O2 permeabilities could correspondingly reach to 3 746.15  and 610.15 Barrer, together with the selectivity of H2/N2 and O2/N2 being 42.8 and 7.0, respectively. 
 

基金项目:
国家自然科学基金项目(20906063); 辽宁省自然科学基金项目(2021-MS-238)

作者简介:
陆新元(1996-),男,辽宁阜新人,硕士研究生,研究方向为气体分离炭膜及应用.

参考文献:
[1]Jiao K, Xuan J, Du Q, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369.
[2]Liang C Z, Chung T S, Lai J Y. A review of polymeric composite membranes for gas separation and energy production[J]. Prog Polym Sci, 2019, 97:101141.
[3]Wang Y, Sheng L, Zhang X, et al. Hybrid carbon molecular sieve membranes having ordered Fe3O4@ZIF-8-derived microporous structure for gas separation[J]. J Membr Sci, 2023, 666: 121127.
[4]Guo C, Li M, Guo W, et al. Quench-induced Cu-ZnO catalyst for hydrogen production from methanol steam reforming[J]. Chem Eng J, 2024, 486: 150331.
[5]Lu M P, Chen C W, Lu M Y. Charge-separation kinetics of photoexcited oxygen vacancies in ZnO nanowire field-effect transistors [J]. Phys Rev Appl, 2016, 6(5): 054018.
[6]Tsai T, Lu Y, Fang J, et al. Ultrasound assistance in the sensitization and activation of porous Al2O3 supports for improving the hydrogen separation of Pd/Al2O3 composite membranes[J]. Int J Hydrogen Energ, 2024, 55: 1007-1016.
[7]汪尔文, 张兵, 李欣明,等. 催化炭膜制备及其强化甲醇水蒸气重整制氢反应[J]. 材料导报, 2023, 37(17): 256-260.
[8]Zhang B, Dang X, Wu Y, et al. Structure and gas permeation of nanoporous carbon membranes based on RF resin/F-127 with variable catalysts[J]. J Mater Res, 2014, 29(23): 2881-2890.
[9]侯旻辰, 李琳, 鲁云华,等. 石墨烯/聚酰亚胺炭膜的制备及其气体分离性能[J]. 新型炭材料, 2020, 35(6): 762-768.
[10]张兵, 江园, 吴永红,等. 高氢渗透分离性的沸石杂化支撑炭膜的制备[J]. 无机材料学报, 2016, 31(3): 257-262.
[11]Zhang B, Wu Y, Lu Y, et al. Preparation and characterization of carbon and carbon/zeolite membranes from ODPA-ODA type polyetherimide[J]. J Membr Sci, 2015, 474: 114-121.
[12]Butnaru I, Varganici C D, Pinteala M, et al. Thermal decomposition of polyimides containing phosphine-oxide units[J]. J Anal Appl Pyrolysis, 2018, 134: 254-264.
[13]Li C, Strachan A. Cohesive energy density and solubility parameter evolution during the curing of thermoset[J]. Polymer, 2018, 135: 162-170.
[14]Gholizadeh Z, Aliannezhadi M, Ghominejad M, et al. High specific surface area γ-Al2O3 nanoparticles synthesized by facile and low-cost co-precipitation method[J]. Sci Rep, 2023, 13(1): 6131.
[15]Gu J, Zhang X, Bai Y, et al. ZSM-5 filled polyether block amide membranes for separating EA from aqueous solution by pervaporation[J]. Int J Polym Sci, 2013, 2013: 1-10.
[16]Zhao J, Zhang G, Liu H, et al. Improved charge transfer and morphology on Ti-modified Cu/γ-Al2O3/Al catalyst enhance the activity for methanol steam reforming[J]. Int J Hydrogen Energ, 2022, 47(42): 18294-18304.
[17]Baydir E, Aras . The role of CO adsorption and CuO formation on the catalyst deactivation during the long-term performance evaluation of methanol steam reforming process for hydrogen production: Comparison of sono-coprecipitation and spray pyrolysis method [J]. Int J Hydrogen Energ, 2022, 47(91): 38594-38608.
[18]Jia X, Zhang H, Ren B, et al. Fe-Ni-Ce-Zr-modified CuO-ZnO catalyst for methanol steam reforming[J]. J Energ Inst, 2023, 110: 101316.
[19]Bagherzadeh S B, Haghighi M. Plasma-enhanced comparative hydrothermal and coprecipitation preparation of CuO/ZnO/Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming[J]. Energ Convers Manage, 2017, 142: 452-465.
[20]李欣明, 黄鹤鸣, 吴永红,等. NaY沸石杂化炭膜的制备及气体分离性能的研究[J]. 膜科学与技术, 2021, 41(3): 24-28.
[21]Yang C, Zhang B, Zhang S, et al. Highly permeable and selective sepiolite hybrid mixed matrix carbon membranes supported on plate carbon substrates for gas separation[J]. Chem Eng Res Des, 2021, 174: 319-330.
[22]Wang F, Zhang B, Liu S, et al. Investigation of the attapulgite hybrid carbon molecular sieving membranes for permanent gas separation[J]. Chem Eng Res Des, 2019, 151: 146-156.
[23]Zhang B, Yang C, Liu S, et al. The positive/negative effects of bentonite on O2/N2 permeation of carbon molecular sieving membranes [J]. Microporous  Mesoporous Mater, 2019, 285: 142-149.
[24]Xie W, Jiao Y, Cai Z, et al. Highly selective benzimidazole-based polyimide/ionic polyimide membranes for pure- and mixed-gas CO2/CH4 separation[J]. Sep Purif Technol, 2022, 282: 120091.
[25]Hu X, Lee W H, Bae J Y, et al. Thermally rearranged polybenzoxazole copolymers incorporating Trger’s base for high flux gas separation membranes[J]. J Membr Sci, 2020, 612: 118437.
[26]Kong J, Liu J, Jia P, et al. Synergistic effect of thermal crosslinking and thermal rearrangement on free volume and gas separation properties of 6FDA based polyimide membranes studied by positron annihilation[J]. J Membr Sci, 2022, 645: 120163.
[27]Yoshimune M, Fujiwara I, Suda H, et al. Gas transport properties of carbon molecular sieve membranes derived from metal containing sulfonated poly(phenylene oxide)[J]. Desalination, 2006, 193(1): 66-72.
[28]Lie J A, Hgg M B. Carbon membranes from cellulose and metal loaded cellulose[J]. Carbon, 2005, 43(12): 2600-2607.
[29]Guo F, Xiao W, Ma C, et al. Constructing gas transmission pathways in two-dimensional composite material ZIF-8@ BNNS mixed-matrix membranes to enhance CO2/N2 separation performance[J]. Membranes, 2023, 13(4): 444.
[30]Sabantina L, Rodríguez-Cano M , Klcker M, et al. Fixing PAN nanofiber mats during stabilization for carbonization and creating novel metal/carbon composites[J]. Polymers, 2018, 10(7): 735.
[31]Hou M, Li L, Song J, et al. Polyimide-derived carbon molecular sieve membranes for high-efficient hydrogen purification: The development of a novel phthalide-containing polyimide precursor[J]. Sep Purif Technol, 2022, 301: 121982.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号