面向呼吸监测及滤除PM0.3的聚乳酸纳纤膜研究
作者:张传玖1, 朱桂英2, 张一帆2, 江亮2, 李佳琪3, 王存民3, 李欣雨3, 宋欣译3, 张明明4, 徐欢2
单位: 1. 国能神东煤炭集团有限责任公司, 榆林 719315; 2. 中国矿业大学 材料与物理学院, 徐州 221116; 3. 中国矿业大学 安全工程学院, 徐州 221116; 4. 中国安全生产科学研究院, 北京 100012
关键词: 聚乳酸纳纤膜; 电活性; 空气过滤; 呼吸监测; PM0.3
DOI号: 10.16159/j.cnki.issn1007-8924.2025.01.006
分类号: TB333
出版年,卷(期):页码: 2025,45(1):48-57

摘要:
通过同轴静电纺丝技术,成功制备了一种具有高效呼吸防护性能的环境友好型纳米纤维膜.该纳纤膜将掺入介电沸石咪唑骨架-8(ZIF-8)晶体的聚L-乳酸(PLA)溶液作为壳层,增强了其电荷储存能力,提高了界面间极化效果.另外,得益于纤维的结构设计及ZIF-8的加入,纤维表面形成的凸起结构有效缓解了高空气阻力.结果显示,当壳层溶液中ZIF-8质量分数为4%时,其表面电势和相对介电常数分别达到3.9 kV和1.64.在32 L/min的空气流量下对空气动力学直径小于0.3  μm颗粒物(PM0.3)的去除效率达到97.99%,压降仅为52.6 Pa,实现了对PM0.3的高效滤除并保持相对较低的空气阻力.此外,基于该纳纤膜的摩擦纳米发电机还能够实现呼吸监测功能.这种独特的设计为制造集呼吸防护和健康监测功能于一体的高性能空气过滤器提供了新的方向.
 
An environmentally friendly nanofibrous membrane (NFM) with efficient respiratory protection performance was successfully prepared by coaxial electrospinning technique. The nanofibrous membrane used the PLA solution doped with dielectric zeolitic imidazolate framework-8 (ZIF-8) crystals as the shell layer, which enhanced the charge storage capacity and improved the inter-interfacial polarization effect of the nanofiber membrane. In addition, thanks to the structural design of the fiber morphology and the addition of ZIF-8, the nano-protruding structure formed on the fiber surface effectively alleviated the air resistance. The results showed that when the mass fraction of ZIF-8 in the shell solution was 4%, its surface potential and relative dielectric constant reached 3.9 kV and 1.64, respectively. At 32 L/min air flowrate, the removal efficiency of PM0.3 reached 97.99%, with a pressure drop of only 52.6 Pa, enabling effective PM0.3 filtration while keeping low air resistance. Additionally, the triboelectric nanogenerators composed of the prepared nanofibrous membrane was also able to realize the respiratory monitoring function. The unique design provided a new direction in the manufacture of high-performance air filters that combine respiratory protection and health monitoring functions. 
 

基金项目:
中国矿业大学研究生创新计划项目(2024WLJCRCZL276, 2024WLKXJ143, 2024WLKXJ140, 2024WLJCRCZL272, 2024WLJCRCZL195); 中央高校基本科研业务费专项资金(2024-10958, 2024-10967); 江苏省研究生科研与实践创新计划(SJCX24_1407, SJCX24_1403, KYCX24_2917, KYCX24_2914, KYCX24_2937); 国家重点研发计划(2023YFC3011704); 国家能源集团井工煤矿粉尘与职业病防治研究(六)煤矿粉尘防护装备研发(E210100285)

作者简介:
张传玖(1983-),男,四川达州人,硕士,工程师,主要从事矿山压力与岩层控制以及煤矿安全生产现场管理工作

参考文献:
 [1]吴延鹏, 赵薇, 陈凤君. 不同相对湿度下亲疏水纳米纤维膜空气过滤性能实验研究[J]. 化工学报, 2020,71(S1):471-478.
 [2]袁凯, 仲兆祥, 邢卫红. 碳纳米管膜在空气净化领域的研究进展[J]. 膜科学与技术, 2021,41(4):138-146.
 [3]Zhang S, Liu H, Tang N, et al. Spider-web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks[J]. Adv Mater, 2020,32(29):2002361.
 [4]Han W, Rao D, Gao H, et al. Green-solvent-processable biodegradable poly(lactic acid) nanofibrous membranes with bead-on-string structure for effective air filtration: “kill two birds with one stone”[J]. Nano Energy, 2022,97:107237.
 [5]李小川, 唐梦珂, 朱金佗, 等. 界面立构复合化电活性聚乳酸纳纤膜的制备及高效过滤性能[J]. 高等学校化学学报, 2023,44(12):34-42.
 [6]Lou Y, Wang B, Ma J, et al. A versatile electrospun polylactic acid nanofiber membrane integrated with halloysite nanotubes for indoor air purification, disinfection, and photocatalytic degradation of pollutants[J]. Sep Purif Technol, 2023,323:124371.
 [7]Wang C, Song X, Li T, et al. Biodegradable electroactive nanofibrous air filters for long-term respiratory healthcare and self-powered monitoring[J]. ACS Appl Mater Inter, 2023,15(31):37580-37592.
 [8]Yang Y, Li X, Zhou Z, et al. Ultrathin, ultralight dual-scale fibrous networks with high-infrared transmittance for high-performance, comfortable and sustainable PM0.3 filter[J]. Nat Commun, 2024,15(1):1586.
 [9]Peng Z, Shi J, Xiao X, et al. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration[J]. Nat Commun, 2022,13(1):7835.
[10]Deng Y, Lu T, Zhang X, et al. Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for efficient, breathable and sustainable air filtration[J]. J Membrane Sci, 2022,660:120857.
[11]Zhu G, Li X, Li X, et al. Nanopatterned electroactive polylactic acid nanofibrous MOFilters for efficient PM0.3 filtration and bacterial inhibition[J]. ACS Appl Mater Inter, 2023,15(40):47145-47157.
[12]Li X, Zhu G, Tang M, et al. Biodegradable MOFilters for effective air filtration and sterilization by coupling MOF functionalization and mechanical polarization of fibrous poly(lactic acid)[J]. ACS Appl Mater Inter, 2023,15(22):26812-26823.
[13]Yang Y, Yang Y, Huang J, et al. Electrospun nanocomposite fibrous membranes for sustainable face mask based on triboelectric nanogenerator with high air filtration efficiency[J]. Adv Fiber Mater, 2023,5(4):1505-1518.
[14]Fu Q, Liu Y, Liu T, et al. Air-permeable cellulosic triboelectric materials for self-powered healthcare products[J]. Nano Energy, 2022,102:107739.
[15]Cai C, Liu Y, Li L, et al. Wet-resistant, dustproof, and germproof self-powered lignocellulosic triboelectric filters for respiratory protection, monitoring, and diagnosis[J]. Chem Eng J, 2023,476:146819.
[16]Li Y, Yuan D, Geng Q, et al. MOF-embedded bifunctional composite nanofiber membranes with a tunable hierarchical structure for high-efficiency PM0.3 purification and oil/water separation[J]. ACS Appl Mater Inter, 2021,13(33):39831-39843.
[17]钱晓明, 魏楚, 钱幺, 等. 空气过滤用微纳米聚丙烯腈/皮芯型聚乙烯-聚丙烯双组分纤维多层复合材料的制备与性能[J]. 复合材料学报, 2020,37(7):1513-1521.
[18]马俊梅, 薛旭平, 林明杰, 等. 具有原位生长ZIF-8中间修饰层的聚乙烯/聚酰胺复合正渗透膜的制备及性能研究[J]. 膜科学与技术, 2023,23(1):1-17.
[19]冯孝权, 赵倩倩, 张亚涛. 基于ZIF-8固定载体复合膜的制备及CO2分离性能研究[J]. 膜科学与技术, 2021,41(4):35-41.
[20]Jiang L, Zhu X, Li J, et al. Electroactive and breathable protective membranes by surface engineering of dielectric nanohybrids at poly(lactic acid) nanofibers with excellent self-sterilization and photothermal properties[J]. Sep Purif Technol, 2024,339:126708.
[21]Ke L, Yang T, Liang C, et al. Electroactive, antibacterial, and biodegradable poly(lactic acid) nanofibrous air filters for healthcare[J]. ACS Appl Mater Inter, 2023,15(27):32463-32474.
[22]He Y, Wang H, Sha Z, et al. Enhancing output performance of PVDF-HFP fiber-based nanogenerator by hybridizing silver nanowires and perovskite oxide nanocrystals[J]. Nano Energy, 2022,98:107343.
[23]Bian Y, Niu Z, Wang S, et al. Removal of size-dependent submicron particles using metal-organic framework-based nanofiber air filters[J]. ACS Appl Mater Inter, 2022,14(20):23570-23576.
[24]Bian Y, Chen C, Wang R, et al. Effective removal of particles down to 15 nm using scalable metal-organic framework-based nanofiber filters[J]. Appl Mater Today, 2020,20:100653.
[25]Bian Y, Wang R, Wang S, et al. Metal-organic framework-based nanofiber filters for effective indoor air quality control[J]. J Mater Chem A, 2018,6(32):15807-15814.
[26]李俊, 伍文静, 孙金玺, 等. 电纺制备聚丙烯腈/聚偏氟乙烯复合纤维膜及其空气过滤性能[J]. 复合材料学报, 2021,38(3):741-748.
[27]Niu Z, Xiao C, Mo J, et al. Investigating the influence of metal-organic framework loading on the filtration performance of electrospun nanofiber air filters[J]. ACS Appl Mater Inter, 2022,14(23):27096-27106.
[28]黄荣廷, 朱桂英, 李欣雨, 等. 电活性聚乳酸纳纤膜的形态调控及高效捕集PM0.3性能[J]. 高等学校化学学报, 2024,45(1):162-171.
[29]Wang S, Zhao X, Yin X, et al. Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration[J]. ACS Appl Mater Inter, 2016,8(36):23985-23994.
[30]Dai X, Li X, Wang X. Morphology controlled porous poly(lactic acid)/zeolitic imidazolate framework-8 fibrous membranes with superior PM2.5 capture capacity[J]. Chem Eng J, 2018,338:82-91.
[31]Guo J, Hanif A, Shang J, et al. PAA@ZIF-8 incorporated nanofibrous membrane for high-efficiency PM2.5 capture[J]. Chem Eng J, 2021,405:126584.
[32]Zhu M, Deng Y, Zheng Y, et al. Tribo-charge enhanced and cellulose based biodegradable nanofibrous membranes with highly fluffy structure for air filtration and self-powered respiration monitoring systems[J]. J Hazard Mater, 2024,468:133770.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号