载铁催化水解离中间层及双极膜性能研究
作者:杨蕊, 范云双, 吴秀翠, 王杰
单位: 天津工业大学 环境科学与工程学院
关键词: 双极膜; 埃洛石纳米管; 水解离; 金属离子
DOI号: 10.16159/j.cnki.issn1007-8924.2025.01.007
分类号: TQ028.8
出版年,卷(期):页码: 2025,45(1):58-69

摘要:
研究了埃洛石纳米管(HNTs)和含铁化合物在双极膜(BPM)界面层中对水解离的影响.采用流延法将FeCl3掺杂的改性埃洛石纳米管(FeCl3-HNTs)作为中间层进行双极膜的制备,并与空白双极膜、HNTs-BPM及商业双极膜进行对比,探究不同双极膜的性能.通过FTIR、XPS、SEM和EDS等表征研究了中间层材料的化学组成和结构;通过I~V曲线、EIS、稳定性和产酸碱情况对双极膜进行性能测试.结果表明,与空白样品相比,在电流密度为50 mA/cm2条件下,FeCl3-HNTs-BPM的跨膜电压降低了46%,180 min后H+和OH-浓度分别达到0.215 mol/L和0.225 mol/L,电流效率为81.2%,能耗为3.36 kW·h/kg;在24 h的监测下双极膜的电压变化幅度较小(1.16 V到1.25 V),具有良好的电压稳定性,且未出现分层现象,表明FeCl3-HNTs作为中间层制备的双极膜有良好的应用前景.
 
 The work in this paper examined the effect of halloysite nanotubes (HNTs) and iron metal compounds in the interface layer (IL) of the bipolar membrane (BPM) on water dissociation. The modified BPM was prepared by casting method with the HNTs and iron metal compounds (FeCl3-HNTs) fixed in the IL and compared with blank bipolar membrane, HNTs-BPM and commercial bipolar membrane to explore the performance of different BPM. The chemical composition and structure of the catalyst compounds were confirmed through FTIR, XPS, SEM and EDS. BPM were characterized by I~V curve, EIS, stability and electrodialysis. The results indicated that the water dissociation voltage of FeCl3-HNTs was reduced by 46% compared with the blank sample, the H+ and OH- concentrations after 180 min were 0.215 mol/L, 0.225 mol/L, respectively at 50 mA/cm2, the current efficiency was 81.2 % and the energy consumption was 3.36 kW·h/kg. The voltage change of BPM under 24 h monitoring is small (1.16 V to 1.25 V), with good voltage stability and no delamination phenomenon, indicating that FeCl3-HNTs as an intermediate layer have good prospects for application. 
 

基金项目:

作者简介:
杨蕊(2000-),女,河北衡水人,硕士生,研究方向为双极膜的制备与性能研究

参考文献:
[1]Cheng G S, Zhao Y, Li W J, et al. Performance enhancement of bipolar membranes modified by Fe complex catalyst[J]. J Membr Sci, 2019, 589:117243.
[2]赵冬梅, 赵有璟, 王敏. 双极膜水解离性能改进研究进展[J]. 材料导报, 2024, 38(10): 31-39.
[3]Bals J, Srink S, Sumbh R, et al. Tailoring the interface layer of the bipolar membrane[J]. J Membr Sci, 2010, 365(1/2): 389-398.
[4]Song H B, Kng M S. Bipolar membranes containing iron-based catalysts for efficient water-splitting electrodialysis[J]. Membranes, 2022, 12(12):1201.
[5]Ge Z J, Shen M A, Ge L, et al. Beneficial use of a coordination complex as the junction catalyst in a bipolar membrane[J]. Acs Appl Energy Mater, 2020, 3(6): 5765-5773.
[6]Celik A, Hasar H. Fabrication and implementation of extensively dense bipolar membrane using FeCl3 as a junction catalyst[J]. Polymer Bulletin, 2022, 79(8): 6815-6825.
[7]郭嘉. 负载型铁基催化水解离中间层及双极膜性能研究[D]. 北京:北京化工大学, 2021.
[8]Eswar B, Manda P, Goel P, et al. Potential of dipicolinic acid as a water-dissociating catalyst in a bipolar membrane[J]. ACS Appl Poly Mater, 2021, 3(12): 6218-6229.
[9]Li G, Shehz M A, Gwe Z J, et al. In-situ grown polyaniline catalytic interfacial layer improves water dissociation in bipolar membranes[J]. Sep Purif Technol, 2021, 275:119167.
[10]Rao K M, Kumar A, Sunee M, et al. pH and near-infrared active; chitosan-coated halloysite nanotubes loaded with curcumin-Au hybrid nanoparticles for cancer drug delivery[J]. Int J Biol Macromol, 2018, 112: 119-125.
[11]陈翔宇, 刘明贤. 埃洛石环境矿物材料的制备及应用研究进展[J]. 硅酸盐学报, 2024, 52(10):3230-3242.
[12]刘成, 雷永林, 朱雪梅, 等. 负载缓蚀剂埃洛石纳米管/含硅聚氨酯复合涂层的防腐性能研究[J]. 现代化工, 2024, 44(7): 169-174.
[13]Zhang R, Liu Y, Li Y, et al. Preparation of polyvinylidene fluoride modified membrane by tannin and halloysite nanotubes for dyes and antibiotics removal[J]. J Mater, 2021, 56(17): 10218-10230.
[14]Liu H L, Zhang L T, Li J, et al. Structure and mechanical properties of HNTs/SiBCN ceramic hybrid aerogels[J]. Ceram Int, 2021, 47(7): 9083-9089.
[15]Massa M, Noto R, Riela S. Halloysite nanotubes: smart nanomaterials in catalysis[J]. Catalysts, 2022, 12(2):149.
[16]Peng F Y, Peng S C, Huang C H, et al. Modifying bipolar membranes with palygorskite and FeCl3[J]. J Membr Sci, 2008, 322(1): 122-127.
[17]Liu Y X, Chen J H, Chen R Y, et al. Effects of multi-walled carbon nanotubes on bipolar membrane properties[J]. Mater Chem Phys, 2018, 203: 259-265.
[18]Liu Y, Guan H J, Zhang J, et al. Polydopamine-coated halloysite nanotubes supported AgPd nanoalloy: An efficient catalyst for hydrolysis of ammonia borane[J]. Int J Hydrogen Energ, 2018, 43(5): 2754-2762.
[19]Chen Y F, Zhang Y T, Liu J D, et al. Preparation and antibacterial property of polyethersulfone ultrafiltration hybrid membrane containing halloysite nanotubes loaded with copper ions[J].Chem Eng J, 2012, 210: 298-308.
[20]Asadi N, Nader R, Mahda M. Doping of zinc cations in chemically modified halloysite nanotubes to improve protection function of an epoxy ester coating[J]. Corros Sci, 2019, 151: 69-80.
[21]Sahin M, Demir S, Srhin N. Enhanced bioactive properties of halloysite nanotubes via polydopamine coating[J]. Polymers, 2022, 14(20):14346.
[22]刘倩. 聚苯醚型阴离子交换膜的制备与性能研究[D]. 长春:长春工业大学,2021.
[23]孙忠霄. 基于多巴胺自聚合的碳纤维表面改性研究[D]. 北京:北京化工大学,2023.
[24]Li S F, Zhang M L, Sun J, et al. Preparation and characterization of superior hydrophilic PVDF/DA membranes by the self-polymerization approach of dopamine[J]. Front Chem, 2023, 11:1162348.
[25]Xue Y H, Fu R Q, Fu Y X, et al. Fundamental studies on the intermediate layer of a bipolar membrane -V. Effect of silver halide and its dope in gelatin on water dissociation at the interface of a bipolar membrane[J]. J Colloid Interface Sci, 2006, 298(1): 313-320.
[26]Kumar M, Shahi V K. Heterogeneous-homogeneous composite bipolar membrane for the conversion of salt of homologous carboxylates into their corresponding acids and bases[J]. J Membr Sci, 2010, 349(1/2): 130-137.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号