CA/PEI辅助ZIFL粒子原位生长制备高性能染料脱盐膜 |
作者:蔡达健1, 郑晨晨1, 李士洋1, 涂龙斗1, 薛立新1,2 |
单位: 1. 浙江工业大学 化工学院, 膜分离与水科学技术中心, 杭州 310014; 2. 温州大学 化学与材料工程学院, 温州 325035 |
关键词: ZIF-L; 原位生长; 染料/盐分离; 复合膜 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.01.009 |
分类号: TQ028.4 |
出版年,卷(期):页码: 2025,45(1):78-91 |
摘要: |
膜分离法因其具有高效、节能的优点,在处理印染废水实现资源回收方面具有较大的潜力.通过在聚砜(PSf)超滤膜上涂覆的聚乙烯亚胺(PEI)和儿茶酚(CA)的交联网络中原位生长锌咪唑框架微晶叶(ZIF-L)来构建高性能染料脱盐复合膜,并系统地研究了制备条件对膜表面结构及其染料/盐分离性能的影响.插入在交联网络中的ZIF-L粒子紧密堆叠,增加了复合膜的表面粗糙度和选择性水通道,大大提升了膜的溶液渗透性.优化制备条件后所得到的CA/PEI(ZIF-L)复合膜,其溶液渗透系数可达到1 100.0 L/(m2·h·MPa),是CA/PEI复合膜的10.4倍,对刚果红(CR)、甲基蓝(MB)和直接黑38(DB-38)截留率分别为99.12%、98.92%和99.35%,而对Na2SO4的截留率仅为1.35%,在染料/盐混合溶液中表现出良好的分离性能以及稳定性. |
Membrane separation, with its high efficiency and energy-saving advantages, holds significant potential in treating wastewater and recovering resources. In this work, thin film composite (TFC) membranes were constructed by in situ grown of zinc imidazole framework microcrystalline leaves (ZIF-L) in the cross linked coating networks of polyethyleneimine (PEI) and catechol (CA) on polysulfone (PSf) ultrafiltration membranes. The effects of preparation conditions on the TFC membrane surface structures and their dye/salt separation properties were systematically investigated. The closely packed ZIF-L particles in the cross linked polymeric networks inserted selective water channels and increased surface area, and greatly enhanced the water permeability of the TFC membranes. The water permeability coefficient of the CA/PEI (ZIF-L) composite membranes obtained after optimizations reached 1 100.0 L/(m2·h·MPa), which was 10.4 times higher than that of the control CA/PEI composite membrane, with the high retention rates for Congo red (CR), Methyl blue (MB), and Direct Black 38 (DB-38) as 99.12%, 98.92%, and 99.35%, respectively, and the low retention rate of Na2SO4 as 1.35%, showing good separation performance as well as stability in treating dye/salt mixed solution. |
基金项目: |
国家自然科学基金面上项目 (NSFC-21975222) |
作者简介: |
蔡达健 (1998-),男,广东中山人,硕士生,研究方向为膜水处理技术 |
参考文献: |
[1]Sun Z, Zhu X, Tan F, et al. Poly(vinyl alcohol)-based highly permeable TFC nanofiltration membranes for selective dye/salt separation[J]. Desalination, 2023, 553: 116479. [2]Zheng J, Zhao R, Uliana A A, et al. Separation of textile wastewater using a highly permeable resveratrol-based loose nanofiltration membrane with excellent anti-fouling performance[J]. Chem Eng J, 2022, 434: 134705. [3]郭灵艺, 谢锐, 巨晓洁, 等. 电中性纳滤膜的制备及其染料脱盐和抗污染性能研究[J]. 膜科学与技术, 2022, 42(6): 134-143. [4]刘晓伟, 胡梦洋, 陶然, 等. 聚醚砜/磺化聚砜/磺化聚醚砜共混疏松纳滤膜的制备及其染料/盐选择分离性能[J]. 膜科学与技术, 2021, 41(4): 65-72. [5]Zhu J, Tian M, Hou J, et al. Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane[J]. J Mater Chem A, 2016, 4(5): 1980-1990. [6]Awad A M, Shaikh S M R, Jalab R, et al. Adsorption of organic pollutants by natural and modified clays: A comprehensive review[J]. Sep Purif Technol, 2019, 228: 115719. [7]Lin J Y, Ye W Y, Xie M, et al. Environmental impacts and remediation of dye-containing wastewater[J]. Nat Rev Earth Environ, 2023, 4(11): 785-803. [8]胡茂华. 膜技术在印染废水回用中的应用[J]. 低碳世界, 2019, 9(1): 8-10. [9]Wang J, Qin L, Lin J, et al. Enzymatic construction of antibacterial ultrathin membranes for dyes removal[J]. Chem Eng J, 2017, 323: 56-63. [10]Chen L, Li N, Wen Z, et al. Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltration application[J]. Chem Eng J, 2018, 347: 12-18. [11]Van der Bruggen B, Curcio E, Drioli E. Process intensification in the textile industry: The role of membrane technology[J]. J Environ Manage, 2004, 73(3): 267-274. [12]Wang J, Zhu J Y, Tsehaye M T, et al. High flux electroneutral loose nanofiltration membranes based on rapid deposition of polydopamine/polyethyleneimine[J]. J Mater Chem A, 2017, 5(28): 14847-14857. [13]Su Y, Luo H, Peng H, et al. Chlorine-resistant loose nanofiltration membranes based on interface quaternization of hexamethylenetetramine[J]. J Membr Sci, 2023, 687: 122078. [14]Sun W, Zhang N, Li Q, et al. Bioinspired lignin-based loose nanofiltration membrane with excellent acid, fouling, and chlorine resistances toward dye/salt separation[J]. J Membr Sci, 2023, 670: 121372. [15]Zhao R, Jin P, Zhu J, et al. Amino acid-based loose polyamide nanofiltration membrane with ultrahigh water permeance for efficient dye/salt separation[J]. J Membr Sci, 2023, 673: 121477. [16]Jin P, Chergaoui S, Zheng J, et al. Low-pressure highly permeable polyester loose nanofiltration membranes tailored by natural carbohydrates for effective dye/salt fractionation[J]. J Hazard Mater, 2022, 421: 126716. [17]魏恋璎. ZIF-8改性芳香聚酰胺纳滤膜的制备及染料纯化性能[D]. 石家庄: 河北科技大学, 2022. [18]Chen B L, Yang Z X, Zhu Y Q, et al. Zeolitic imidazolate framework materials: Recent progress in synthesis and applications[J]. J Mater Chem A, 2014, 2(40): 16811-16831. [19]Liu X G, Shan Y Y, Zhang S T, et al. Application of metal organic framework in wastewater treatment[J]. Green Energy Environ, 2023, 8(3): 698-721. [20]Sharma U, Pandey R, Basu S, et al. ZIF-67 blended PVDF membrane for improved Congo red removal and antifouling properties: A correlation establishment between morphological features and ultra-filtration parameters[J]. Chemosphere, 2023, 320: 138075. [21]Gao C, Zou P, Ji S, et al. High-flux loose nanofiltration membrane with anti-dye fouling ability based on TA@ZIF-8 for efficient dye/salt separation[J]. J Environ Chem Eng, 2023, 11(5): 110444. [22]Yu H, Cai D, Li S, et al. Tight UF membranes with ultrahigh water flux prepared by in-situ growing ZIF particles in NIPS process for greatly enhanced dye removal efficiency[J]. J Membr Sci, 2023, 666: 121136. [23]Zhu X, Lou M, Chen J, et al. MXene/ZIF-L co-stacking membranes with high water permeation for solute-tailored selectivity[J]. Appl Surf Sci, 2023, 625: 157194. [24]Hu R, He Y, Huang M, et al. Strong adhesion of graphene oxide coating on polymer separation membranes[J]. Langmuir, 2018, 34(36): 10569-10579. [25]Yang L, Wang Z, Zhang J. Highly permeable zeolite imidazolate framework composite membranes fabricated via a chelation-assisted interfacial reaction[J]. J Mater Chem A, 2017, 5(29): 15342-15355. [26]Huang C, Zhang H, Zheng K, et al. Two-dimensional hydrophilic ZIF-L as a highly selective adsorbent for rapid phosphate removal from wastewater[J]. Sci Total Environ, 2021, 785: 147382. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号