膜集成工艺在PEM电解水制氢中的应用试验研究 |
作者:王晓丽1, 黄鹏飞1, 陈琛1, 马振强2, 王生辉1,3, 蒋立东3, 李东洋1 |
单位: 1. 自然资源部天津海水淡化与综合利用研究所, 天津 300192; 2. 国投津能发电有限公司, 天津 300480; 3. 天津市蓝十字膜技术有限公司, 天津 300192 |
关键词: PEM电解水制氢; 高品质淡水; 膜集成工艺; 能量回收 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.01.010 |
分类号: TQ051 |
出版年,卷(期):页码: 2025,45(1):92-100 |
摘要: |
随着氢能产业的快速发展,未来其对水的消耗量将会激增.质子交换膜(PEM)电解水制氢作为最有潜力的制氢工艺之一,其过程需要高品质淡水资源.反渗透海水淡化作为开源增量技术,是解决淡水资源紧缺的重要途经.为缓解电解制氢对高品质淡水的需求压力,本研究通过对膜集成工艺组合研究,以海水为原水,对比了不同膜集成工艺淡化处理效果和有无能量回收装置工艺的能耗情况.设计试验装置处理规模为40 m3/d,工艺流程主要包括介质过滤、三级反渗透和EDI,并采用高压泵能量回收一体机进行集成化设计.试验结果显示,产水电导率(25 ℃)≤0.1 mS/m,吨水电耗约为2.9 kW·h,与无能量回收相比能耗节约49%,形成适用于PEM电解水制氢用水的膜集成海水淡化工艺. |
With the rapid development of the hydrogen energy industry, its water consumption will surge in the future. PEM electrolysis of water for hydrogen production is one of the most promising hydrogen production processes, which requires high-quality fresh water resources. Reverse osmosis seawater desalination, as an open-source incremental technology, is an important way to solve the shortage of fresh water resources. To alleviate the demand pressure for high-quality fresh water in electrolytic hydrogen production, this study compared the desalination treatment effects of different membrane integration processes and the presence or absence of energy recovery devices using seawater as raw water through a combination of membrane integration processes. The designed experimental device has a processing capacity of 40 m3/d, and the process mainly consists of medium filtration, three-stage reverse osmosis, and EDI, with an integrated design using a high-pressure pump energy recovery machine. The experimental results show that the conductivity of the produced water (25 ℃) is ≤ 0.1 mS/m, and the power consumption per ton of water is about 2.9 kW·h. Compared with no energy recovery, it can save 49% of energy consumption, forming a membrane integrated seawater desalination process suitable for PEM electrolysis water hydrogen production water, providing technical reference for seawater desalination in hydrogen production water. |
基金项目: |
2023年国家(兵团)科技计划项目(2023AB034 ); 农业农村部西北绿洲节水农业重点实验室开放课题(2023OWSL-01); 山东省重大科技创新工程项目(LSKJ202204503); 天津市科技计划项目(22JCYBIC00660); 中央级公益性科研院所基本科研业务费专项资金项目(K-JBYWF-2023-T04,K-JBYWF-2024-ZT06,K-JBYWF-2021-T06,KJBYWF-2024-QR-06,KJBYWF-2024-QR-08) |
作者简介: |
王晓丽(1986-),女,河北石家庄人,工程师,硕士,从事海水与苦咸水淡化技术研究 |
参考文献: |
[1]Wang T Z, Cao X J, Jiao L F. PEM water electrolysis for hydrogen production: Fundamentals, advances, and prospects[J]. Carb Neutrality, 2022, 1: 21. [2]Kumar S S, Himabindu V. Hydrogen production by PEM water electrolysis - A review[J]. Mater Sci Energ Technol, 2019, 2(3): 442-454. [3]张显峰, 唐乾, 刘伟, 等. PEM电解制氢技术问题及现状分析[J]. 山东化工, 2024, 53(4): 105-109. [4]Busch H, Radtke J, Islar M. Safe havens for energy democracy? Analysing the low-carbon transitions of Danish energy islands[J]. Z Politikwiss, 2023, 33(2): 227-251. [5]Armeni A, Semenyuk M, Plet C, et al. D12.5 deployment plan for future european offshore grid development. Short-term project-bornholm island cleanstream energy hub[R]. Kongens Lyngby: DTU, 2021. [6]Li M, Li H, Fan H F, et al. Engineering interfacial sulfur migration in transition-metal sulfide enables low overpotential for durable hydrogen evolution in seawater[J]. Nat Commun, 2024, 15: 6154. [7]李露, 薛喜东, 靳少培, 等. 反渗透淡化工程设计案例分析[J]. 净水技术, 2019, 38(7): 130-132. [8]Chakik F E, Kaddami M, Mikou M. Effect of operating parameters on hydrogen production by electrolysis of water[J]. Int J Hydrogen Energ, 2017, 42(40): 25550-25557. [9]Amikam G, Nativ P, Gendel Y. Chlorine-free alkaline seawater electrolysis for hydrogen production[J]. Int J Hydrogen Energ, 2018, 43(13): 6504-6514. [10]Zeng K, Zhang D K. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Prog Energ Combust, 2010, 36(3): 307-326. [11]Vermeiren P, Moreels J P, Claes A, et al. Electrode diaphragm electrode assembly for alkaline water electrolysers[J]. Int J Hydrogen Energ, 2009, 34(23): 9305-9315. [12]潘献辉, 郑睿, 王晓楠, 等. 膜法海水淡化厂产品水水质与饮用安全分析[J]. 中国给水排水, 2016, 32(20): 19-23. [13]李颖华. 航空电子用高纯水制取工艺及应用[J]. 冶金丛刊, 2017(5): 211-212. [14]Zhang X B, Yang Y Y, Ngo H H, et al. A critical review on challenges and trend of ultrapure water production process[J]. Sci Total Environ, 2021, 785: 147254. [15]中华人民共和国自然资源部. HY/T 245-2018 海水淡化装置能量消耗测试方法[S]. 北京: 中国标准出版社, 2018. [16]中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 32359-2015 海水淡化反渗透膜装置测试评价方法[S]. 北京: 中国标准出版社, 2015. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号