真空膜蒸馏技术在烟草纯露浓缩中的应用研究 |
作者:张朝1, 李艳芳1, 章存勇1, 田志豪2, 刘文龙2, 张兵3, 田振峰1, 黄兰1, 李传润2,4, 颜海洋2,4, 葛少林1 |
单位: 1. 安徽省气溶胶解析调控及生物效应重点实验室, 合肥 231200; 2. 安徽中医药大学 药学院, 合肥 230012; 3. 浙江省烟草质量监督检测站, 杭州 310001; 4. 安徽中医药大学 制药工程技术研究中心,合肥 230012 |
关键词: 真空膜蒸馏; 烟草纯露; 再造烟叶; 浓缩 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.01.013 |
分类号: TQ028.8 |
出版年,卷(期):页码: 2025,45(1):119-128 |
摘要: |
通过真空膜蒸馏技术对造纸法再造烟叶萃取液水蒸气蒸馏得到的烟草纯露进行浓缩.研究了不同操作条件对烟草纯露浓缩效果的影响,对其传质、传热进行了讨论,并对膜面污染进行表征分析.结果表明,膜材质、渗透侧真空度、进料液温度、进料液流速对渗透通量和有机物保留率均有明显影响,聚四氟乙烯(PTFE)材质的疏水疏油膜保留率更高;在70 ℃、70 kPa时渗透通量最高可达12.74 L/(m2·h);当流速为0.5 cm/s时,有机物的保留率最高可以达到94.8%.利用真空膜蒸馏技术浓缩烟草纯露具有良好的技术可靠性和经济竞争力. |
The tobacco pure dew obtained from steam distillation of the extract of reconstituted tobacco leaves was concentrated by vacuum membrane distillation. The influence of different operating conditions on the concentration of tobacco pure dew were investigated, in which the mass and heat transfer were discussed, and the surface contamination was characterized and analyzed. Results show that the membrane material, the vacuum degree on the permeating side, the temperature of the feed liquid, and the flow rate of the feed have obvious effects on the permeation flux and the retention rate, and the hydrophobic and oleophobic membrane based on PTFE has higher retention rate. The maximum permeable flux can reach 12.74 L/(m2·h) at 70 ℃ and 70 kPa, and the highest organic matter retention rate can reach 94.8% at the velocity of 0.5 cm/s. Therefore, the vacuum membrane distillation exhibits an excellent technical reliability and economic competitiveness in the concentration of tobacco pure dew. |
基金项目: |
安徽省气溶胶解析调控及生物效应重点实验室开放课题(2022302); 国家重点研发计划项目(2022YFB3805100); 安徽省高校优秀青年科研项目(2022AH030063); 安徽中医药大学人才支持计划项目重大项目(2022rcZD005) |
作者简介: |
张朝(1985-),男,河北保定人,硕士,高级工程师,主要从事烟草化学相关研究 |
参考文献: |
[1]周颖, 洪传冰, 陈姚宇, 等. 玫瑰纯露的提取及其在天然护肤产品中的应用[J]. 安徽农学通报, 2023, 29(22): 134-137. [2]张洪广, 张晓斌, 胡勇, 等. 玫瑰纯露的制备及其在化妆品中的应用[J]. 广东化工, 2020, 47(18): 103-104. [3]杜飞. 烟用酒香型发酵料液研制[D]. 贵阳:贵州大学, 2021. [4]戴亚, 张艳芳, 苏国岁, 等. 一种同时制备烟草精油和烟草露的方法[P].中国: CN202011313173.0. 2022-03-11. [5]Criscuoli A. Osmotic distillation and vacuum membrane distillation for juice concentration: A comparison in terms of energy consumption at the permeate side[J]. Sep Purif Technol, 2021, 278: 119593. [6]Drioli E, Ali A, Macedonio F. Membrane distillation: Recent developments and perspectives[J]. Desalination, 2015, 356: 56-84. [7]Zhang Z, Atia A A, Andrés-Maas J A, et al. Comparative techno-economic assessment of osmotically-assisted reverse osmosis and batch-operated vacuum-air-gap membrane distillation for high-salinity water desalination[J]. Desalination, 2022, 532: 115737. [8]Anshul Y, Pawan K L, Vinod K S . Membrane distillation crystallization technology for zero liquid discharge and resource recovery: Opportunities, challenges and futuristic perspectives[J]. Sci Total Environ, 2022, 806: 150692. [9]Schwantes R, Chavan K, Winter D, et al. Techno-economic comparison of membrane distillation and MVC in a zero liquid discharge application[J]. Desalination, 2018, 428: 50-68. [10]Ren M, Ning P, Xu J, et al. Concentration and treatment of ceric ammonium nitrate wastewater by integrated electrodialysis-vacuum membrane distillation process[J]. Chem Eng J, 2018, 351: 721-731. [11]Nthunya N L, Chong C K, Lai O S, et al. Progress in membrane distillation processes for dye wastewater treatment: A review[J]. Chemosphere, 2024, 360, 142347. [12]刘燕, 夏天天, 孙位仕, 等. 电渗析-真空膜蒸馏集成膜法回收离子液体[J]. 化工学报, 2018, 69(9): 3905-3913. [13]Suwaileh W, Johnson D, Jones D, et al. An integrated fertilizer driven forward osmosis- renewables powered membrane distillation system for brackish water desalination: A combined experimental and theoretical approach[J]. Desalination, 2019, 471: 114126. [14]Al-Asheh S, Banat F, Qtaishat M, et al. Concentration of sucrose solutions via vacuum membrane distillation[J]. Desalination, 2005, 195(1): 60-68. [15]Nene S, Kaur S, Sumod K, et al. Membrane distillation for the concentration of raw cane-sugar syrup and membrane clarified sugarcane juice[J]. Desalination, 2002, 147(1/2/3): 157-160. [16]ron K, Erika Békássy M E, Vatai G. Production of black-currant juice concentrate by using membrane distillation[J]. Desalination, 2008, 241(1): 309-314. [17]Criscuoli A, Drioli E. Vacuum membrane distillation for the treatment of coffee products[J]. Sep Purif Technol, 2019, 209: 990-996. [18]Abu-Zeid E A M, Zhang Y, Dong H, et al. A comprehensive review of vacuum membrane distillation technique[J]. Desalination, 2015, 356: 1-14. [19]杨毅, 赵睿, 郑振泽, 等. 城市污水处理厂二级出水DOM的荧光组分、分子特性和来源[J]. 环境工程,2024,42(12):66-72. [20]Zhang Y, Ji Z, Yan H, et al. Water recovery from cleaning wastewater of traditional Chinese medicine processing via vacuum membrane distillation: parameters optimization and membrane fouling investigation[J]. Chem Eng Res Des, 2022, 188: 555-563. [21]Han M, Dong T, Hou D, et al. Carbon nanotube based Janus composite membrane of oil fouling resistance for direct contact membrane distillation[J]. J Membr Sci, 2020, 607: 118078. [22]Leow L T H, Haan Y T, Ebrahim M, et al. Development and optimization of low surface free energy of rGO-PVDF mixed matrix membrane for membrane distillation[J]. Sep Purif Technol, 2023, 305: 122428. [23]Goh S, Zhang Q, Zhang J, et al. Impact of a biofouling layer on the vapor pressure driving force and performance of a membrane distillation process[J]. J Membr Sci, 2013, 438: 140-152. [24]Warsinger M D, Swaminathan J, Guillen B E, et al. Scaling and fouling in membrane distillation for desalination applications: A review[J]. Desalination, 2015, 356: 294-313. [25]Yuan Z, Yu Y, Sui X, et al. Carbon composite membranes for thermal-driven membrane processes[J]. Carbon, 2021, 179: 600-626. [26]张岩松, 赵艳, 纪政, 等. 真空膜蒸馏处理中药姜黄清洗废水工艺研究[J]. 膜科学与技术, 2023, 43(1): 133-138. [27]Kew-Ho L, Choongkyun Y, Jiwon K. Separation recovery of dilute organics from aqueous solution by membrane distillation and selective condensation hybrid process[J]. Sep Purif Technol, 2022, 300: 121813. [28]Zhu Z G, Wang W, Zhang Q Y, et al. Insight into the feed/permeate flow velocity on the trade-off of water flux and scaling resistance of superhydrophobic and welding-pore fibrous membrane in membrane distillation[J]. J Membr Sci, 2021, 620: 118883. [29]Song L, Huang Q, Huang Y, et al. An electro-thermal braid-reinforced PVDF hollow fiber membrane for vacuum membrane distillation[J]. J Membr Sci, 2019, 591: 117359. [30]Lalia S B, Janajreh I, Hashaikeh R. A facile approach to fabricate superhydrophobic membranes with low contact angle hysteresis[J]. J Membr Sci, 2017, 539: 144-151. [31]Dumée F L, Gray S, Duke M, et al. The role of membrane surface energy on direct contact membrane distillation performance[J]. Desalination, 2013, 323: 22-30. [32]Zuo G, Wang R. Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application[J]. J Membr Sci, 2013, 447: 26-35. [33]Lu Z, Yan Z, Chang H, et al. New insights into antifouling property and interfacial mechanism in photo - Fenton membrane distillation[J]. Chem Eng J, 2024, 492: 151981. [34]Marcello S. Long-term performance of membrane distillation process[J]. J Membr Sci, 2005, 265(1/2): 153-159. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号