基于聚烯烃膜的海水淡化污水处理联动工艺
作者:靳顺龙, 任晓芳, 孙亚军, 况武, 王振, 曹阳
单位: 北京碧水源膜科技有限公司
关键词: FO; 聚烯烃; 海水淡化; 污水
DOI号: 10.16159/j.cnki.issn1007-8924.2025.01.016
分类号: TQ028.8
出版年,卷(期):页码: 2025,45(1):146-155

摘要:
海水淡化和污水处理是目前解决水资源危机的重要手段,然而两种技术都面临运行成本较高的问题.通过构建基于聚烯烃膜(PE) 的正渗透(FO) 海水稀释耦合反渗透(RO) 的海水淡化工艺(PEFO-RO), 同步实现污水减量化.研究发现,PEFO膜依靠其薄的特性,在海水为汲取液、生活污水为原液时,可以实现高达32 L/(m2·h)的渗透通量,是目前常规膜渗透通量的2倍以上.此外,汲取液的流速或浓度越高,膜的渗透通量越大.通过该工艺,海水可以被稀释1.6倍,盐的质量分数由2.5%降至1.3%,同时污水被浓缩1.9倍,大幅实现减量化处理.此外,PEFO对污水中的TDS、Mg2+、Ca2+、K+、Na+、SO2-4、TN、TP和COD的截留率分别达到了95.1%、98.1%、87.7%、61.2%、99.7%、96.8%、73.9%、88.6%和86.9%,实现了对污染物的有效截留.此外,相较于传统RO,PEFO-RO工艺有望大幅降低高压泵投资,并且每年降低70%的电费.
 
Seawater desalination and sewage treatment are important means to solve the water crisis at present. However, both technologies are facing higher operating costs. The forward osmosis (FO)- reverse osmosis (RO) coupling process based on polyolefin membrane (PE) was constructed to pre-desalinate seawater and simultaneously reduce sewage. It is found that PEFO membrane can achieve a permeation flux as high as 32 L/(m2·h), which is more than twice that of conventional membrane, depending on its thin characteristics when seawater is used as the extraction liquid and domestic sewage is used as the stock solution. In addition, the higher the flow rate or concentration of the extract, the higher the permeation flux of the membrane. Through this process, the seawater can be diluted by 1.6 times, the salinity can be reduced from 2.5% to 1.3%, and the sewage can be concentrated by 1.9 times, which greatly realizes the reduction treatment. In addition, the rejection rates of TDS,Mg2+,Ca2+,K+,Na+,SO2-4,TN,TP and COD reached 95.1%, 98.1%, 87.7%, 61.2%, 99.7%, 96.8%, 73.9%, 88.6% and 86.9%, respectively. In addition, compared with the traditional RO, the PEFO-RO process is expected to greatly reduce the investment of high-pressure pump and reduce the electricity bill by 70% every year. 
 

基金项目:
国家重点研发计划项目(2023YFB3810904)

作者简介:
靳顺龙(1990-),男,山东泰安人,博士,工程师,主要研究方向为有价物料回收、反渗透膜元件开发、膜法水处理技术、家用净水等领域.

参考文献:
[1]张胜梅. 海水淡化技术的分类及成本分析[J]. 中国资源综合利用, 2022, 40(6):57-59.
[2]宋瀚文, 宋达, 张辉, 等. 国内外海水淡化发展现状[J]. 膜科学与技术, 2021, 41(4): 170-176.
[3]楚帅, 葛维春, 李音璇, 等. 含海水淡化负荷的可再生能源消纳技术研究综述[J]. 智慧电力, 2021, 49(11):14-23.
[4]丁旭东. 反渗透海水淡化技术的现状与发展[J]. 自动化应用, 2023, 12(A): 29-47.
[5]张壹超,丁玥,黄秋香,等. 海水驱动不同FO分离性能对比研究[J]. 水处理技术, 2021, 47(9):103-108.
[6]郭文萱. 正渗透联合膜蒸馏技术处理市政污水及高盐废水的研究[D]. 青岛: 青岛理工大学, 2022.
[7]Zheng Y, Huang M H, Chen L, et al. Comparison of tetracycline rejection in reclaimed water by three kinds of forward osmosis membranes[J]. Desalination, 2015, 359:113-122.
[8]王海澜. 正渗透技术在海水淡化中的应用研究[D]. 济南:山东大学, 2021.
[9]Juan C O B, Gonzalo R F, Andres D B, et al. Forward osmosis: Evaliation thin-film-composite membrane for municipal sewage concentration[J]. Chem Eng J, 2016, 306:531-537.
[10]刘舒悦. 正渗透同步处理城市污水和海水淡化浓水过程中膜污染特性与控制研究[D]. 无锡: 江南大学,2022. 
[11]丁纯. 正渗透应用: 废水处理, 膜污染控制和高性能汲取溶质[D]. 武汉: 华中科技大学, 2020.
[12]Im S J, Jeong S, Jeong S, et al. Techno-economic evaluation of an element-scale forward osmosis-reverse osmosis hybrid process for seawater desalination[J]. Desalination, 2020, 476: 114240.
[13]Kim J E, Phuntsho S, Chekli L, et al. Environmental and economic assessment of hybrid FO-RO/NF system with selected inorganic draw solutes for the treatment of mine impaired water[J]. Desalination, 2018, 429:96-104.
[14]Park K, Kim D Y, Jang Y H, et al. Comprehensive analysis of a hybrid FO/crystallization/RO process for improving its economic feasibility to seawater desalination[J]. Water Res, 2020, 171: 115426.
[15]Bartholomew T V, Siefert N S, Mauter M S. Cost optimization of osmotically assisted reverse osmosis[J]. Environ Sci Technol, 2018, 52(20):11813-11821.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号