氧化石墨烯纳滤膜插层改性研究进展
作者:李泾贤, 郝嘉劲, 王磊, 王旭东
单位: 西安建筑科技大学 环境与市政工程学院, 陕西省膜分离技术研究院, 陕西省膜分离重点实验室, 陕西省环境工程重点实验室
关键词: 纳滤; 纳米材料; 膜; 氧化石墨烯; 插层法
DOI号: 10.16159/j.cnki.issn1007-8924.2025.01.017
分类号: TQ028
出版年,卷(期):页码: 2025,45(1):156-171

摘要:
近年来,由无机二维材料氧化石墨烯(GO)构筑的纳滤膜因其显著的渗透和分离性能而备受关注.其中,GO纳滤膜内部典型的二维传输通道成为了决定其权衡上限的关键因素.插层法作为一种灵活便捷的改性方式已被证明可用于调控GO纳滤膜的层间通道性能.但根据插层材料种类和性质的不同,其对GO纳滤膜的综合性能会产生一定影响.因此,本文从GO纳滤膜的层间通道调控出发,强调了插层技术的独特优势.并根据插层材料的属性将其分为刚性纳米材料和柔性纳米材料两大类,详细分析了各类材料在对GO纳滤膜进行插层时结构和性能上的影响.同时,也提出了插层法在制备GO纳滤膜时目前所面临的一些困难和挑战,并对未来的研究方向做出了展望,旨在为设计具有出色稳定性和高分离性能的GO纳滤膜提供参考和借鉴.
 
In recent years, nanofiltration membranes constructed from the inorganic two-dimensional material graphene oxide (GO) have attracted much attention due to their remarkable permeation and separation properties. Among these, the typical two-dimensional transport channel inside the GO nanofiltration membranes have become a key factor in determining the upper limit of their trade-off. Intercalation, as a flexible and convenient modification method, has been proven suitable for regulating the interlayer channel properties of GO nanofiltration membranes. However, the different types and properties of intercalation materials can impact the overall performance of GO nanofiltration membranes. This paper emphasizes the unique advantages of intercalation technology from the perspective of interlayer channel regulation in GO nanofiltration membranes. It also classifies the intercalated materials into two categories, rigid nanomaterials and flexible nanomaterials organic polymers, according to their properties, and analyses in detail the effects of each type of material on the structure and performance of GO nanofiltration membranes when intercalated. Additionally, we highlight the difficulties and challenges in the preparation of GO nanofiltration membranes using the intercalation method and provide an outlook on future research directions. This study aims to offer a reference for designing GO nanofiltration membranes with excellent stability and high separation performance. 

基金项目:
国家重点研发计划项目(2022YFC2904300);陕西省重点科技创新团队计划项目(2024RS-CXTD-51)

作者简介:
李泾贤(2000-),男,河南焦作人,硕士生,研究方向为氧化石墨烯纳滤膜的插层改性

参考文献:
[1]宋瀚文, 宋达, 张辉, 等. 国内外海水淡化发展现状[J]. 膜科学与技术, 2021, 41(4):170-176.
[2]Baggio G, Qadir M, Smakhtin V. Freshwater availability status across countries for human and ecosystem needs[J]. Sci Total Environ, 2021, 792:148230.
[3]Ahmad N A, Goh P S, Yogarathinam L T, et al. Current advances in membrane technologies for produced water desalination[J]. Desalination, 2020, 493:114643.
[4]Alkhouzaam A, Qiblawey H. Functional GO-based membranes for water treatment and desalination: Fabrication methods, performance and advantages: A review[J]. Chemosphere, 2021, 274:129853.
[5]Zhang M C, Guan K C, Ji Y F, et al. Controllable ion transport by surface-charged graphene oxide membrane[J]. Nat Commun, 2019, 10(1):1253.
[6]Yang J L, Zhang Y, Ge Y Z, et al. Interlayer engineering of layered materials for efficient ion separation and storage[J]. Adv Mater, 2024, 36(18):2311141.
[7]Ai X Y, Zhang P P, Dou Y, et al. Graphene oxide membranes with hierarchical structures used for molecule sieving[J]. Sep Purif Technol, 2020, 230:115879.
[8]Foo Z H, Rehman D, Bouma A T, et al. Lithium concentration from salt-lake brine by Donnan-enhanced nanofiltration[J]. Environ Sci Technol, 2023, 57(15):6320-6330.
[9]Shen L, Cheng R, Yi M, et al. Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving[J]. Nat commun, 2022, 13(1):500.
[10]Azadi E, Singh N, Dinari M, et al. Recent advances in the fabrication of organic solvent nanofiltration membranes using covalent/metal organic frameworks[J]. Chem Commun, 2024, 60: 2865.
[11]温书, 张文娟, 杜海洋, 等. 氧化石墨烯在纳滤膜改性中的应用[J]. 膜科学与技术, 2022, 42(2):190-198.
[12]Xu D L, Zhu X W, Luo X S, et al. MXene nanosheet templated nanofiltration membranes toward ultrahigh water transport[J]. Environ Sci Technol, 2021,55(2):1270-1278.
[13]Zhu J Y, Meng W Q, Xue Q, et al. Two dimensional sulfonated molybdenum disulfide (S-MoS2) thin-film nanocomposite nanofiltration membrane for selective desalination[J]. J Membr Sci, 2023,676:121574.
[14]Li B, Yang Z Y, Dou Y B, et al. Two-dimensional LDH film templating for controlled preparation and performance enhancement of polyamide nanofiltration membranes[J]. Angew Chem Int Ed, 2023,62(29):e202304442.
[15]Yu X, Qian X, Wei Q, et al. Superhigh and robust ion selectivity in membranes assembled with monolayer clay nanosheets[J]. Small, 2023, 19(35): 2300338.
[16]Sharif S, Ahmad K S, Rehman F, et al. Two-dimensional graphene oxide based membranes for ionic and molecular separation: Current status and challenges[J]. J Environ Chem Eng, 2021, 9(4):105605.
[17]Zheng S X, Tu Q S, Urban J J, et al. Swelling of graphene oxide membranes in aqueous solution: Characterization of interlayer spacing and insight into water transport mechanisms[J]. ACS nano, 2017, 11(6):6440-6450.
[18]Huang H, De S K K H, Kumara G R A, et al. Structural evolution of hydrothermally derived reduced graphene oxide[J]. Sci Rep, 2018, 8(1):6849.
[19]Yuan B Q, Wang M X, Wang B, et al. Cross-linked graphene oxide framework membranes with robust nano-channels for enhanced sieving ability[J]. Environ Sci Technol, 2020,54(23):15442-15453.
[20]Wang Y , Li S S, Yang H Y, et al. Progress in the functional modification of graphene/graphene oxide: A review[J]. RSC Adv, 2020,10(26):15328-15345.
[21]Chen L, Li N, Wen Z Y, et al. Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltration application[J]. Chem Eng J, 2018,347:12-18.
[22]Guo J, Bao H F, Zhang Y Q, et al. Unravelling intercalation-regulated nanoconfinement for durably ultrafast sieving graphene oxide membranes[J]. J Membr Sci, 2021,619:118791.
[23]Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067):442-444.
[24]Su P C, Wang F ,Li Z J, et al. Graphene oxide membranes: the controlling of transport pathways[J]. J Mater Chem A, 2020,8(31):15319-15340.
[25]Zhang W, Huang Q B, Liu S, et al. Graphene oxide membrane regulated by surface charges and interlayer channels for selective transport of monovalent ions over divalent ions[J]. Sep Purif Technol, 2022,291:120938.
[26]Chen X F, Qiu M H, Ding H, et al. Reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification[J]. Nanoscale, 2016, 8(10):5696-5705.
[27]Nam Y T, Choi J, Kang K M, et al. Enhanced stability of laminated graphene oxide membranes for nanofiltration via interstitial amide bonding[J]. ACS Appl Mater Interfaces, 2016, 8(40):27376-27382.
[28] Li W, Wu W, Li Z. Controlling interlayer spacing of graphene oxide membranes by external pressure regulation[J]. ACS Nano, 2018, 12(9):9309-9317.
[29]Abraham J, Vasu K S, Williams C D, et al. Tunable sieving of ions using graphene oxide membranes[J]. Nat Nanotechnol, 2017, 12(6):546-550.
[30]Wei Y, Zhang Y, Gao X, et al. Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes[J]. Carbon, 2016, 108:568-575.
[31]Lin L C, Grossman J C. Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations[J]. Nat Commun, 2015, 6(1):8335.
[32]Alhadhrami A, Salgado S, Maheshwari V. Thermal reduction to control the spacing in graphene oxide membranes: Effect on ion diffusion and electrical conduction[J]. RSC Adv, 2016, 6(74):70012-70017.
[33]Zhang Z S, Zou L D, Aubry C, et al. Chemically crosslinked rGO laminate film as an ion selective barrier of composite membrane[J]. J Membr Sci, 2016, 515:204-211.
[34]Zhang P, Gong J L, Zeng G M, et al. Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal[J]. Chem Eng J, 2017, 322:657-666.
[35]Wang S, Zhu L Y, Yang R J, et al. Insights into high Li+/Mg2+ separation performance using a PEI-grafted graphene oxide membrane[J]. J Phys Chem C, 2023, 127(14):6981-6990.
[36]王朋辉, 李怡恩, 张亚涛. 氧化石墨烯尺寸调控及其复合膜分离性能研究[J]. 膜科学与技术, 2019, 39(3):62-69.
[37] Krishnamoorthi R, Butt F S, Mazlan N A, et al. Tuning the interlayer spacing of graphene oxide membrane via surfactant intercalation for ultrafast nanofiltration[J]. J Membr Sci, 2024,706:122942.
[38] Wang Y, Zhang Y, Zuo H, et al. Enhancing the permeability and selectivity of graphene oxide membrane through polyhedral oligomeric silsesquioxane intercalation for textile wastewater treatment[J]. Desalination, 2024, 587:117933.
[39]Wang W, Eftekhari E, Zhu G, et al. Graphene oxide membranes with tunable permeability due to embedded carbon dots[J]. Chem Commun, 2014, 50(86):13089-13092.
[40]Zhao G, Hu R, Zhao X, et al. High flux nanofiltration membranes prepared with a graphene oxide homo-structure[J]. J Membr Sci, 2019, 585:29-37.
[41]Wu X, Liu S, Cui X, et al. Manipulating microenvironments of nanochannels in lamellar membranes by quantum dots for highly enhanced nanofiltration performance[J]. Chem Eng Sci, 2020, 228:116001.
[42]Wang S, Mahalingam D, Sutisna B, et al. 2D-dual-spacing channel membranes for high performance organic solvent nanofiltration[J]. J Mater Chem A, 2019, 7(19):11673-11682.
[43]Zhou S, Guan K, Wang Z, et al. Confined and mediated intercalation of nanoparticles in graphene oxide membrane to fine-tune desalination performance[J]. Chem Eng J, 2023, 465:143005.
[44]Gao S J, Qin H L, Liu P P, et al. SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules[J]. J Mater Chem A, 2015,3(12):6649-6654.
[45]Han Y, Jiang Y Q, Gao C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes[J]. ACS Appl Mater Interfaces, 2015,7(15):8147-8155.
[46]Zhang H G, Quan X, Chen S, et al. Combined effects of surface charge and pore size on co-enhanced permeability and ion selectivity through rGO-OCNT nanofiltration membranes[J]. Environ Sci Technol, 2018,52(8):4827-4834.
[47]Zhu L P, Wang H X, Bai J, et al. A porous graphene composite membrane intercalated by halloysite nanotubes for efficient dye desalination[J]. Desalination, 2017,420:145-157.
[48]Guan J Y, You X D, Shi B B, et al. Engineering multi-pathway graphene oxide membranes toward ultrafast water purification[J]. J Membr Sci, 2021,638:119706.
[49]Zhang L Q, Wang J, Zhang Y, et al. Leaf-veins-inspired nickel phosphate nanotubes-reduced graphene oxide composite membranes for ultrafast organic solvent nanofiltration[J]. J Membr Sci, 2022,649:120401.
[50]Hung W S, Lin T Z, Chiao Y H, et al. Graphene-induced tuning of the d-spacing of graphene oxide composite nanofiltration membranes for frictionless capillary action-induced enhancement of water permeability[J]. J Mater Chem A, 2018, 6(40):19445-19454.
[51]Xing J J, Zhang H G, Wei G L, et al. Improving the performance of the lamellar reduced graphene oxide/molybdenum sulfide nanofiltration membrane through accelerated water-transport channels and capacitively enhanced charge density[J]. Environ Sci Technol, 2023,57(1):615-625.
[52]Wu Y Y, Fu C F, Huang Q, et al. 2D heterostructured nanofluidic channels for enhanced desalination performance of graphene oxide membranes[J]. ACS Nano, 2021,15(4):7586-7595.
[53]Yu J, He Y, Wang Y Q, et al. Graphene oxide nanofiltration membrane for efficient dyes separation by hexagonal boron nitride nanosheets intercalation and polyethyleneimine surface modification[J]. Colloids Surf A, 2023,656:130367.
[54]Li S, Lu J, Zou D, et al. Constructing reduced porous graphene oxide for tailoring mass-transfer channels in ultrathin MXene (Ti3C2Tx) membranes for efficient dye/salt separation[J]. Chem Eng J, 2023, 457:141217.
[55]Liu T, Liu X Y, Graham N, et al. Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance[J]. J Membr Sci, 2020, 593:117431.
[56]Jia F C, Yang L, Sun L Y, et al. Efficient separation of dyes using two-dimensional heterogeneous composite membranes[J]. Water Res, 2023,247:120693.
[57]Dong Y Q, Lin C, Gao S J, et al. Single-layered GO/LDH hybrid nanoporous membranes with improved stability for salt and organic molecules rejection[J]. J Membr Sci, 2020,607:118184.
[58]Chen C C, Wu X L, Chen J J, et al. Built-in electric fields in heterostructured lamellar membranes enable highly efficient rejection of charged mass[J]. Angew Chem Int Ed, 2024,63(29):e202406113.
[59]Yang K J, Pan T T, Hong S, et al. Ultrathin graphene oxide membrane with constructed tent-shaped structures for efficient and tunable molecular sieving[J]. Environ Sci Nano, 2020, 7(8):2373-2384.
[60]Zhang W Y, Xu H, Xie F, et al. General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane[J]. Nat Commun, 2022,13(1):471.
[61]Yu Z T, Peng Y B, Yang F C, et al. An ultra-high permeability membrane composed of graphene oxide nanosheets supported by a MOF framework utilized for dye separation[J]. J Mater Chem A, 2024,12(25):14986-14990.
[62]Guan K C, Zhao D, Zhang M C, et al. 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance[J]. J Membr Sci,2017,542:41-51.
[63]Qu H J, Xiao X, Han Z Y, et al. Graphene oxide nanofiltration membrane based on three dimensional size-controllable metal?organic frameworks for water treatment[J]. ACS Appl Nano Mater, 2022,5(4):5196-5207.
[64]Chen X X, Boffa V, Gaggero E, et al. Metal-organic framework-intercalated graphene oxide nanofiltration membranes for enhanced treatment of wastewater effluents[J]. Chem Eng J, 2024, 486:150207.
[65]Wang Z, Nakagawa K, Guan K C, et al. Two-dimensional interlayer space induced horizontal transformation of metal-organic framework nanosheets for highly permeable nanofiltration membranes[J]. Small, 2023, 19(33):2300672.
[66]Huang L L, Li Z Y, Luo Y, et al. Low-pressure loose GO composite membrane intercalated by CNT for effective dye/salt separation[J]. Sep Purif Technol, 2021, 256:117839.
[67]Zeng W J, Li C, Feng Y, et al. Carboxylated multi-walled carbon nanotubes (MWCNTs-COOH)-intercalated graphene oxide membranes for highly efficient treatment of organic wastewater[J]. J Water Process Eng, 2021, 40:101901.
[68]Sivakumar M, Liu D K, Chiao Y H, et al. Synergistic effect of one-dimensional silk nanofiber and two-dimensional graphene oxide composite membrane for enhanced water purification[J]. J Membr Sci, 2020, 606:118142.
[69]Zhang X K, Li H, Wang J, et al. In-situ grown covalent organic framework nanosheets on graphene for membrane-based dye/salt separation[J]. J Membr Sci, 2019, 581:321-330.
[70]Wang Q X, Yu Z X, Liu Y C, et al. Electrostatic self-assembly method to prepare intercalated graphene oxide composite membrane to improve hydrophilicity and flux[J]. Diamond Relat Mater, 2021, 117:108492.
[71]Ma X Y, Wang A Q, Miao J L, et al. 2D lamellar membrane with MXene hetero-intercalated small sized graphene oxide for harsh environmental wastewater treatment[J]. Sep Purif Technol, 2023, 311:123248.
[72]Alemayehu H G, Liu C J, Hou J J, et al. Highly stable membrane comprising MOF nanosheets and graphene oxide for ultra-permeable nanofiltration[J]. J Membr Sci, 2022, 652:120479.
[73]Dong L L, Li M H, Zhang S, et al. NH2-Fe3O4-regulated graphene oxide membranes with well-defined laminar nanochannels for desalination of dye solutions[J]. Desalination, 2020, 476:114227.
[74]Li S L, Lu J, Zou D, et al. Constructing reduced porous graphene oxide for tailoring mass-transfer channels in ultrathin MXene (Ti3C2Tx) membranes for efficient dye/salt separation[J]. Chem Eng J, 2023, 457:141217.
[75]Zhang W Y, Xu H, Xie F, et al. General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane[J]. Nat Commun, 2022, 13(1):471.
[76]Wang Z, Zhu J Y, Xu S N, et al. Graphene-like MOF nanosheets stabilize graphene oxide membranes enabling selective molecular sieving[J]. J Membr Sci, 2021, 633:119397.
[77]Wang J, Wang Y M, Zhang Y T, et al. Zeolitic imidazolate framework/graphene oxide hybrid nanosheets functionalized thin film nanocomposite membrane for enhanced antimicrobial performance[J]. ACS Appl Mater Interfaces, 2016, 8(38):25508-25519.
[78]Zhang W B, Shi M Q, Heng Z X, et al. Soft particles enable fast and selective water transport through graphene oxide membranes[J]. Nano Lett, 2020,20(10):7327-7332.
[79]Yu H, He Y, Xiao G Q, et al. Intercalation of soft PPy polymeric nanoparticles in graphene oxide membrane for enhancing nanofiltration performances[J]. Sep Purif Technol, 2021,272:118933.
[80]Xu Y Q, Wu M Y, Yu S Y, et al. Ultrathin and stable graphene oxide film via intercalation polymerization of polydopamine for preparation of digital inkjet printing dye[J]. J Membr Sci, 2019,586:15-22.
[81]Ding J, Zhao H, Xu B, et al. Biomimetic sustainable graphene ultrafast-selective nanofiltration membranes[J]. ACS Sustain Chem Eng, 2020, 8(24):8986-8993.
[82]Zhao Y, Zhou C, Wang J Q, et al. Formation of morphologically confined nanospaces via self-assembly of graphene and nanospheres for selective separation of lithium[J]. J Mater Chem A, 2018,6(39):18859-18864.
[83]Zhang Z J, Xiao X, Zhou Y H, et al. Bioinspired graphene oxide membranes with pH-responsive nanochannels for high-performance nanofiltration[J]. ACS Nano, 2021,15(8):13178-13187.
[84]Liu Z H, Ding J W, Li S R, et al. Constructing high-performance GO membrane with pore-adjustable polymer nanoparticles[J]. J Membr Sci, 2023,682:121768. 
[85]Zhang M C, Xing C, Huang J N, et al. Adaptive gating enhances intelligent membranes for cellular functions and precise separations[J]. Adv Funct Mater, 2023,34:2310647.
[86]Wu Y, Gu Z N, Lu C H, et al. In situ regulation of selectivity and permeability by electrically tuning pore size in trans-membrane ion process[J]. Water Res, 2023,244:120478.
[87]Chen L, Shi G S, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing[J]. Nature, 2017,550:380-383.
[88]Dai F, Zhou F, Chen J, et al. Ultrahigh water permeation with a high multivalent metal ion rejection rate through graphene oxide membranes[J]. J Mater Chem A, 2021, 9(17):10672-10677.
[89]Yang Y, Mu L, Chen L, et al. Precise control of the interlayer spacing between graphene sheets by hydrated cations[J]. Phys Chem Chem Phys, 2019, 21(14):7623-7629.
[90]Yuan S, Li Y, Xia Y, et al. Stable cation-controlled reduced graphene oxide membranes for improved NaCl rejection[J]. J Membr Sci, 2021,621:118995.
[91]Reddy P R, Kumar A, Reddy K A. Understanding the boron rejection of cation intercalated multilayered graphene oxide (GO) membrane in reverse osmosis (RO) process: A molecular dynamics study[J]. J Mol Liq, 2023, 389:122817.
[92]Wang S, Liang S, Chen L, et al. Effects of cationic concentration on controlling the interlayer spacings for highly effective ion rejection via graphene oxide membranes[J]. Chem Commun, 2020, 56(18):2743-2746.
[93]Gogoi A, Reddy K A, Mondal P K. Influence of the presence of cations on the water and salt dynamics inside layered graphene oxide (GO) membranes[J]. Nanoscale, 2020, 12(13):7273-7283.
[94]Wen X, Foller T, Jin X, et al. Understanding water transport through graphene-based nanochannels via experimental control of slip length[J]. Nat Commun, 2022, 13(1):5690.
[95]Yu W, Graham N. Development of a stable cation modified graphene oxide membrane for water treatment[J]. 2D Mater, 2017, 4(4):045006.
[96]Dai L H, Xu F, Huang K, et al. Ultrafast water transport in two-dimensional channels enabled by spherical polyelectrolyte brushes with controllable flexibility[J]. Angew Chem Int Ed, 2021,133(36):20086-20094.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号