膜技术分离尿液中尿素的研究进展
作者:杨权1, 裴洪昌2, 李贤辉1
单位: 1. 广东工业大学 生态环境与资源学院, 大湾区城市环境安全与绿色发展教育部重点实验室, 广州 510006; 2. 山东理工大学 化学化工学院, 淄博 255000
关键词: 膜分离技术; 尿液处理; 资源化利用; 尿素
DOI号: 10.16159/j.cnki.issn1007-8924.2025.01.020
分类号: TQ028; X703
出版年,卷(期):页码: 2025,45(1):197-206

摘要:
尿素是尿液中氮元素的主要来源,对尿液中尿素进行回收不仅可以扩充尿素生产来源,减少碳排放,还可减轻污水处理厂运行压力.膜分离技术在尿液处理领域有广泛运用,本文概述了尿液组成与性质,对膜蒸馏、正渗透、纳滤、反渗透膜分离技术以及不同膜工艺耦合在尿液尿素回收处理中的应用与研究进行了总结.分析认为膜分离技术用于尿素回收利用仍有较大提升空间,随着技术的发展,新型膜材料的研发与不同膜分离技术的联用将成为主要研究方向.
 
Urea represents the primary source of nitrogen in urine. The recovery of urea is able to expand the availability of this nutrient for production, reduce carbon emissions, and alleviate the operating burdens of wastewater treatment facilities. Membrane separation technologies have been extensively employed in the treatment of urine. This study presents a comprehensive overview of the composition and properties of urine, and summarize the applications and researches on membrane distillation (MD), forward osmosis (FO), nanofiltration (NF), and reverse osmosis (RO), as well as the integrated membrane processes for urea recovery. The analysis indicates that there is considerable potential for further development of membrane separation technologies for urea recovery. In light of ongoing advancements, the creation of innovative membrane materials and the integration of diverse membrane technologies are expected to be the primary directions in near future researches. 
 

基金项目:
国家自然科学基金面上项目(52270063); 广东省粤港科技创新联合资助项目(2021A0505110013); “珠江人才计划”引进创新创业团队(2019ZT08L213)

作者简介:
杨权(2000-),男,湖南长沙人,硕士生,研究方向为分离膜与过程传质

参考文献:
[1]Urbanczyk E, Sowa M, Simka W. Urea removal from aqueous solutions - A review[J]. J Appl Electrochem, 2016, 46(10):1011-1029.
[2]华德荣. 尿素市场回顾与展望[J]. 现代化工, 2001(3): 50-53.
[3]Ray H, Perreault F, Boyer T H. Urea recovery from fresh human urine by forward osmosis and membrane distillation (FO-MD)[J]. Environ Sci  Wat Res, 2019, 5(11):1993-2003.
[4]Rose C, Parker A, Jefferson B, et al. The characterization of feces and urine: A review of the literature to inform advanced treatment technology[J]. Crit Rev Env Sci Technol, 2015, 45(17):1827-1879.
[5]Liu Q, Sun W, Zeng Q, et al. Integrated processes for simultaneous nitrogen, phosphorus, and potassium recovery from urine: A review[J]. J Water Process Eng, 2024, 59: 104975.
[6]Wilsenach J, Van Loosdrecht M. Impact of separate urine collection on wastewater treatment systems[J]. Water Sci Technol, 2003, 48(1):103-110.
[7]Ishii S K L, Boyer T H. Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: focus on urine nutrient management[J]. Water Res, 2015, 79: 88-103.
[8]Barbosa S G, Peixoto L, Soares O, et al. Influence of carbon anode properties on performance and microbiome of Microbial Electrolysis Cells operated on urine[J]. Electrochim Acta, 2018, 267: 122-132.
[9]Simha P, Senecal J, Nordin A, et al. Alkaline dehydration of anion-exchanged human urine: Volume reduction, nutrient recovery and process optimisation[J]. Water Res, 2018, 142: 325-336.
[10]Lind B B, Ban Z, Bydén S. Volume reduction and concentration of nutrients in human urine[J]. Ecol Eng, 2001, 16(4):561-566.
[11]Antonini S, Nguyen P T, Arnold U, et al. Solar thermal evaporation of human urine for nitrogen and phosphorus recovery in Vietnam[J]. Sci Total Environ, 2012, 414: 592-599.
[12]Tremouli A, Greenman J, Ieropoulos I. Investigation of ceramic MFC stacks for urine energy extraction[J]. Bioelectrochemistry, 2018, 123: 19-25.
[13]Wu B. Membrane-based technology in greywater reclamation: A review[J]. Sci Total Environ, 2019, 656: 184-200.
[14]田继兰, 张弦, 周丽霞, 等. 膜组合工艺在含盐废水处理中的应用[J]. 膜科学与技术, 2019, 39(5):119-124.
[15]Hassan S S M, Abdel-Shafy H I, Mansour M S M. Removal of pharmaceutical compounds from urine via chemical coagulation by green synthesized ZnO-nanoparticles followed by microfiltration for safe reuse[J]. Arab J Chem, 2019, 12(8):4074-4083.
[16]Liu Q L, Liu C H, Zhao L, et al. Integrated forward osmosis-membrane distillation process for human urine treatment[J]. Water Res, 2016, 91: 45-54.
[17]Udert K M, Larsen T A, Gujer W. Fate of major compounds in source-separated urine[J]. Water Sci Technol, 2006, 54(11/12):413-420.
[18]Pronk W, Biebow M, Boller M. Electrodialysis for recovering salts from a urine solution containing micropollutants[J]. Environ Sci Technol, 2006, 40(7):2414-2420.
[19]Pronk W, Palmquist H, Biebow M, et al. Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine[J]. Water Res, 2006, 40(7):1405-1412.
[20]Kakimoto T, Shibuya H, Suzuki H, et al. Components of pure fresh human urine and their fate in storage process[M]//FUNAMIZU N. Resource-Oriented Agro-sanitation Systems: Concept, Business Model, and Technology. Tokyo: Springer Japan. 2019: 123-137.
[21]Chipako T L, Randall D G. Urine treatment technologies and the importance of pH[J]. J Environ Chem Eng, 2020, 8(1):103622.
[22]Ray H, Saetta D, Boyer T H. Characterization of urea hydrolysis in fresh human urine and inhibition by chemical addition[J]. Environ Sci  Wat Res, 2018, 4(1):87-98.
[23]Randall D G, Krhenbühl M, Kpping I, et al. A novel approach for stabilizing fresh urine by calcium hydroxide addition[J]. Water Res, 2016, 95: 361-369.
[24]Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: A comprehensive review[J]. Desalination, 2012, 287: 2-18.
[25]Eykens L, De Sitter K, Dotremont C, et al. Membrane synthesis for membrane distillation: A review[J]. Sep Purif Technol, 2017, 182: 36-51.
[26]Zhao Z P, Xu L, Shang X, et al. Water regeneration from human urine by vacuum membrane distillation and analysis of membrane fouling characteristics[J]. Sep Purif Technol, 2013, 118: 369-376.
[27]Kamranvand F, Davey C J, Sakar H, et al. Impact of fouling, cleaning and faecal contamination on the separation of water from urine using thermally driven membrane separation[J]. Sep Sci Technol, 2018, 53(9):1372-1382.
[28]Tun L L, Jeong D, Jeong S, et al. Dewatering of source-separated human urine for nitrogen recovery by membrane distillation[J]. J Membr Sci, 2016, 512: 13-20.
[29]Tabasian A N, Ricceri F, Morciano M, et al. Modeling and experimental evaluation of membrane distillation aimed at urine treatment for direct potable reuse in space stations[J]. Desalination, 2024, 572: 117119.
[30]Cartinella J L, Cath T Y, Flynn M T, et al. Removal of natural steroid hormones from wastewater using membrane contactor processes[J]. Environ Sci Technol, 2006, 40(23):7381-7386.
[31]Capuano A, Memoli B, Andreucci V E, et al. Membrane distillation of human plasma ultrafiltrate and its theoretical applications to haemodialysis techniques[J]. Int J Artif Organs, 2000, 23(7):415-422.
[32]Lyu Y, Ao X, Cheng S, et al. Simultaneous recovery of nutrients and water from human urine by a novel thermally activated peroxydisulfate and membrane distillation integrated system[J]. Chem Eng J, 2023, 459: 141548.
[33]Volpin F, Badeti U, Wang C, et al. Urine treatment on the international space station: Current practice and novel approaches[J]. Membranes, 2020, 10(11):327.
[34]Jafarinejad S. Forward osmosis membrane technology for nutrient removal/recovery from wastewater: recent advances, proposed designs, and future directions[J]. Chemosphere, 2021, 263: 128116.
[35]叶静菱, 王昊, 陈东辉, 等. 正渗透处理印染废水的性能及回用研究[J]. 膜科学与技术, 2022, 42(6):144-150.
[36]Ray H, Perreault F, Boyer T H. Ammonia recovery from hydrolyzed human urine by forward osmosis with acidified draw solution[J]. Environ Sci Technol, 2020, 54(18):11556-11565.
[37]Volpin F, Chekli L, Phuntsho S, et al. Simultaneous phosphorous and nitrogen recovery from source-separated urine: A novel application for fertiliser drawn forward osmosis[J]. Chemosphere, 2018, 203: 482-489.
[38]Engelhardt S, Vogel J, Duirk S E, et al. Urea and ammonium rejection by an aquaporin-based hollow fiber membrane[J]. J Water Process Eng, 2019, 32: 100903.
[39]Patel A, Mungray A A, Mungray A K. Technologies for the recovery of nutrients, water and energy from human urine: A review[J]. Chemosphere, 2020, 259: 127372.
[40]Randall D G, Naidoo V. Urine: The liquid gold of wastewater[J]. J Environ Chem Eng, 2018, 6(2):2627-2635.
[41]Contés-De-Jesús E J, Cha X, Flynn M. The use of porifera membranes for urea rejection in forward osmosis systems[C]// 44th International Conference on Environmental Systems. Tuscon, Arizona, USA: International Conference on Environmental Systems, 2014:1-8.
[42]蒋善庆, 王晓昌, 李超, 等. 源分离尿液资源化利用与风险控制技术研究进展[J]. 安全与环境学报, 2014, 14(5):174-182.
[43]Wang J, Wei Y. Recovery of monovalent mineral salts from urine in controlled ecological life support system by nanofiltration: feasibility study[J]. Desalination, 2020, 479: 114344.
[44]Chen D, Werber J R, Zhao X, et al. A facile method to quantify the carboxyl group areal density in the active layer of polyamide thin-film composite membranes[J]. J Membr Sci, 2017, 534: 100-108.
[45]Crane L, Ray H, Perreault F, et al. Recovery of urea from human urine using nanofiltration and reverse osmosis[J]. ACS Es T Water, 2022, 3(7):1835-1846.
[46]Ray H, Perreault F, Boyer T H. Rejection of nitrogen species in real fresh and hydrolyzed human urine by reverse osmosis and nanofiltration[J]. J Environ Chem Eng, 2020, 8(4):103993.
[47]Lee S, Lueptow R M. Membrane rejection of nitrogen compounds[J]. Environ Sci Technol, 2001, 35(14):3008-3018.
[48]Yoon Y, Lueptow R M. Removal of organic contaminants by RO and NF membranes[J]. J Membr Sci, 2005, 261(1/2):76-86.
[49]Breitner L N, Howe K J, Minakata D. Effect of functional chemistry on the rejection of low-molecular weight neutral organics through reverse osmosis membranes for potable reuse[J]. Environ Sci Technol, 2019, 53(19):11401-11409.
[50]Ek M, Bergstrom R, Bjurhem J E, et al. Concentration of nutrients from urine and reject water from anaerobically digested sludge[J]. Water Sci Technol, 2006, 54(11/12):437-444.
[51]Yoon Y, Lueptow R M. Reverse osmosis membrane rejection for ersatz space mission wastewaters[J]. Water Res, 2005, 39(14):3298-3308.
[52]Fujioka T, Osako M, Oda K, et al. Impact of heat modification conditions on the removal of N-nitrosodimethylamine by polyamide reverse osmosis membranes[J]. Sep Purif Technol, 2020, 247: 116921.
[53]Shultz S, Bass M, Semiat R, et al. Modification of polyamide membranes by hydrophobic molecular plugs for improved boron rejection[J]. J Membr Sci, 2018, 546: 165-172.
[54]Habib S, Weinman S T. Modification of polyamide reverse osmosis membranes for the separation of urea[J]. J Membr Sci, 2022, 655:120584.
[55]Shen M, Keten S, Lueptow R M. Dynamics of water and solute transport in polymeric reverse osmosis membranes via molecular dynamics simulations[J]. J Membr Sci, 2016, 506: 95-108.
[56]Flanagan C P, Randall D G. Development of a novel nutrient recovery urinal for on-site fertilizer production[J]. J Environ Chem Eng, 2018, 6(5):6344-6350.
[57]Greenlee L F, Lawler D F, Freeman B D, et al. Reverse osmosis desalination: Water sources, technology, and today’s challenges[J]. Water Res, 2009, 43(9):2317-2348.
[58]李利华, 崔勇, 蒋玉明, 等. 反渗透膜阻垢剂投加量优化及其阻垢性能评价[J]. 膜科学与技术, 2021, 41(3):135-141.
[59]Courtney C, Randall D G. Concentrating stabilized urine with reverse osmosis: How does stabilization method and pre-treatment affect nutrient recovery, flux, and scaling?[J]. Water Res, 2022, 209: 117970.
[60]Ray H, Perreault F, Boyer T H. Ammonia recovery and fouling mitigation of hydrolyzed human urine treated by nanofiltration and reverse osmosis[J]. Environ Sci  Wat Res, 2022, 8(2):429-442.
[61]Avlonitis S A, Kouroumbas K, Vlachakis N. Energy consumption and membrane replacement cost for seawater RO desalination plants[J]. Desalination, 2003, 157(1):151-158.
[62]Courtney C, Randall D G. A hybrid nanofiltration and reverse osmosis process for urine treatment: Effect on urea recovery and purity[J]. Water Res, 2022, 222: 118851.
[63]Choi S J, Crane L, Kang S, et al. Removal of urea in ultrapure water system by urease-coated reverse osmosis membrane[J]. Wat Res X, 2024, 22: 100211.
[64]Liu Q, Liu C, Zhao L, et al. Integrated forward osmosis-membrane distillation process for human urine treatment[J]. Water Res, 2016, 91: 45-54.
[65]Volpin F, Chekli L, Phuntsho S, et al. Optimisation of a forward osmosis and membrane distillation hybrid system for the treatment of source-separated urine[J]. Sep Purif Technol, 2019, 212: 368-375.
[66]Gau C, Sato S, Zhang D, et al. Recovering nutrients and rejecting trace organic compounds in human urine by a forward osmosis-membrane distillation (FO-MD) hybrid system[J]. Water Sci Technol, 2022, 86(8):1904-1914.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号