侧链型氟掺杂聚(对三联苯哌啶)阴离子交换膜的制备 |
作者:张国良, 于泽, 张秋根, 朱爱梅, 刘庆林 |
单位: 厦门大学 化学化工学院, 福建省理论与计算化学重点实验室 |
关键词: 燃料电池; 离子交换膜; 氟掺杂阴离子交换膜 |
DOI号: 10.16159/j.cnki.issn1007-8924.2024.06.002 |
分类号: O632.7; TQ028 |
出版年,卷(期):页码: 2024,44(6):10-17 |
摘要: |
作为阴离子交换膜燃料电池(Anion exchange membrane fuel cell, AEMFC)核心部件,阴离子交换膜(Anion exchange membrane, AEM)存在离子电导率和溶胀之间的trade-off效应,以及机械性能不足的问题,阻碍其商业化应用.本研究通过合成侧链氟原子分别位于多阳离子侧链末端苯环的邻位、间位和对位的3种疏水性侧链型AEM,探究含氟基团位于不同位置对AEM性能影响.其中,侧链氟原子位于多阳离子侧链末端苯环邻位的PTF6-PTPQ2F具有低溶胀(7.13%, 80 ℃)和高离子电导率(165.79 mS/cm, 80 ℃)的特性,且其能够在较苛刻的碱性环境中维持高离子电导保留率(92.42%, 80 ℃, 2 mol/L NaOH, 1 500 h).此外,PTF6-PTPQ2F在单电池功率密度(990 mW/cm2, 80 ℃)以及耐久性方面均具有优势.相对于PTF6-PTPQ3F和PTF6-PTPQ4F,PTF6-PTPQ2F的各项性能较好. |
As the core component of anion exchange membrane fuel cell (AEMFC), anion-exchange membrane (AEM) has a trade-off effect between ionic conductivity and swelling, as well as insufficient mechanical properties, which hinder its commercial application. This study synthesized three types of hydrophobic side-chain fluorine-containing AEMs with the fluorine atom located at the end of the side chain of the polycation and at the ortho, meta, and para positions of the aromatic ring, respectively, to investigate the influence of the position of the fluorine group on the performance of AEM.Among them, PTF6-PTPQ2F, whose side chain fluorine atom is located in the benzene ring at the end of the polycationic side chain, had the characteristics of low swelling (7.13%, 80 ℃) and high ionic conductivity (165.79 mS/cm, 80 ℃), and could maintain high ionic conductivity retention (92.42%, 80 ℃, 2 mol/L NaOH, 1 500 h) in a harsh alkaline environment. In addition, PTF6-PTPQ2F offered advantages in terms of single-cell power density (990 mW/cm2,80 ℃) as well as durability. Compared with PTF6-PTPQ3F and PTF6-PTPQ4F, PTF6-PTPQ2F had relatively better performance. |
基金项目: |
国家自然基金面上项目(22078272, 22278340) |
作者简介: |
张国良(1992-),男,福建漳州人,硕士研究生,主要从事离子膜的研究与制备 |
参考文献: |
[1]Jiao K, Xuan J, Du Q, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 597 (7867): 361-369. [2]Hren M, Bozic M, Fakin D, et al. Alkaline membrane fuel cells: Anion exchange membranes and fuels[J]. Sustain Energy Fuels, 2021, 5 (3): 604-637. [3]Nicholas J R, Henry A,Kostalik I V, et al. Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications[J]. JACS, 2010, 132 (10): 3400-3404. [4]Wang Y J, Qiao J L, Baker R, et al. Alkaline polymer electrolyte membranes for fuel cells applications[J]. Chem Soc Rev, 2012, 42 (13): 5768-5787. [5]Pham T H, Olsson J S, Jannasch P. Effects of the N-alicyclic cation and backbone structures on the performance of poly(terphenyl)-based hydroxide exchange membranes[J]. J Matter Chem A, 2019, 7 (26): 15895-15906. [6]Pan D, Pham T H, Jannasch P. Poly(arylene piperidine) anion exchange membranes with tunable N-alicyclic quaternary ammonium side chains[J]. ACS Appl Energy Mater, 2021, 4 (10): 11652-11665. [7]Ono H, Kimura T, Takano A, et al. Robust anion conductive polymers containing perfluoroalkylene and pendant ammonium groups for high performance fuel cells[J]. J Mater Chem A, 2017, 5 (47): 24804-24812. [8]Yan F,Xu G, Pan J,et al. High-performance poly(biphenyl piperidinium) type anion exchange membranes with interconnected ion transfer channels: Cooperativity of dual cations and fluorinated side chains[J]. Adv Funct Mater, 2023, 33(35): 2302364. [9]Zhang R, Zhao X, Li W, et al. Partially fluorianated poly(arylene-akane)s containing cobaltocenium for alkaline-stable anion exchange membranes[J]. Chem Commun, 2023, 59 (35): 5298-5292. [10]Xiao Y, Hu L, Gao L, et al. Enabling high anion-selective conductivity in membrane for high-performance neutral organic based aqueous redox flow battery by microstructure design[J]. Chem Eng J, 2022, 432: 134268. [11]Diaz A M, Zolotukhin M G, Fomine S, et al. A novel, one-pot synthesis of novel 3F, 5F, and 8F aromatic polymers[J]. Macromol Rapid Commun, 2007, 28(2): 183-187. [12]Riess J G. Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery[J]. Artif Cells, Blood Substit Immobiliz Biotechnol, 2005, 33 (1): 47-63. [13]Liu J, Yuan Q, Toste F.D, et al. Enantioselective construction of remote tertiary carbon-fluorine bonds[J]. Nat Chem, 2019, 11(8): 710-715. [14]Hickner M A, Zhu L, Pan J, et al. Multication side chain anion exchange membranes[J]. Macromolecules, 2016, 49(3): 815-824. [15]Yu Z, Gao W T, Liu Y J, et al. Fluorinated poly (p-triphennyl piperidine) anion exchange membranes with robust dimensional stability for fuel cells[J]. J Colloid Interface Sci, 2023, 651: 404-414. [16]Marino M G, Kreuer K D. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids[J]. Chem Sus Chem, 2015, 8 (3): 513-523. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号