基于交联分子改性的抗污染超滤膜研制 |
作者:杜致尧, 厍景国, 管旺旺, 闫弘津, 武春瑞, 吕晓龙 |
单位: 天津工业大学 省部共建分离膜与膜过程国家重点实验室,材料科学与工程学院 |
关键词: 聚醚砜; 超滤膜; 原位开环; 交联网络; 抗污染 |
DOI号: 10.16159/j.cnki.issn1007-8924.2024.06.003 |
分类号: TQ028 |
出版年,卷(期):页码: 2024,44(6):18-25 |
摘要: |
针对聚醚砜(PES)超滤膜固有的疏水性而导致的膜污染、分离性能下降等问题,设计了便捷高效的“亲水交联网络”策略.在PES溶解过程中加入3-氨丙基三甲氧基硅烷(APTMS)和聚乙二醇二缩水甘油醚(PEGDGE),两者在铸膜液中发生原位开环反应生成长链分子(A-P).之后在相转化过程中引发A-P分子水解缩合生成Si-O-Si化学交联点构建亲水交联网络,制备了PES超滤膜.重点探究了A-P含量对PES膜结构和性能的影响.结果表明:随着A-P分子含量的增加,PES膜亲水性明显提升,孔径增大,最可几孔径占比增加,在0.1 MPa测试压力下纯水通量相较于原膜提升了近4倍,BSA截留率提升到98%. |
Aiming at the inherent hydrophobicity of polyethersulfone (PES) ultrafiltration membranes, which leads to membrane fouling and degradation of separation performance, a convenient and efficient “hydrophilic cross-linked network” strategy has been designed. During the dissolution of PES, 3-aminopropyltrimethoxysilane (APTMS) and polyethylene glycol diglycidyl ether (PEGDGE) were added, and both of them developed into long-chain molecules (A-P) by in situ ring-opening reaction in the casting solution. Subsequent hydrolytic condensation of A-P molecules during phase inversion generated Si-O-Si chemical cross-linking sites triggering the construction of hydrophilic cross-linking networks, and the PES ultrafiltration membrane was prepared. Focusing on the effect of A-P content on the structure and performance of PES membrane, the results showed that with the increase of A-P content, the hydrophilicity of PES membrane was significantly improved, the pore size increased, the percentage of the most available pore size increased. Under the test pressure of 0.1 MPa, the pure water flux was increased by nearly 4 times compared with the original membrane, and the BSA retention rate was increased to 98%. |
基金项目: |
国家自然科学基金项目(52170047) |
作者简介: |
杜致尧(1998-),男,甘肃兰州人,硕士研究生,研究方向为分离膜制备与应用 |
参考文献: |
[1]Fane A G, Wang R, Hu M X. Synthetic membranes for water purification: Status and future[J]. Angew Chem Int Ed, 2015, 54(11): 3368-3386. [2]Siagian U W R, Khoiruddin K, Wardani A K, et al. High-performance ultrafiltration membrane: Recent progress and its application for wastewater treatment [J]. Curr Pollut Rep, 2021, 7(4): 448-462. [3]Mohammad A W, Ng C Y, Lim Y P, et al. Ultrafiltration in food processing industry: Review on application, membrane fouling, and fouling control[J]. Food Bioprocess, 2012, 5(4): 1143-1156. [4]Otitoju T A, Ahmad A L, Ooi B S. Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending[J]. RSC Adv, 2018, 8(40): 22710-22728. [5]Ahmad T, Guria C, Mandal A. A review of oily wastewater treatment using ultrafiltration membrane: A parametric study to enhance the membrane performance[J]. J Water Process Eng, 2020, 36: 101289. [6]Zhao C S, Xue J M, Ran F, et al. Modification of polyethersulfone membranes - A review of methods[J]. Prog Mater Sci, 2013, 58(1): 76-150. [7]Zhu L J, Song H M, Zhang D W, et al. Negatively charged polysulfone membranes with hydrophilicity and antifouling properties based on in situ cross-linked polymerization[J]. J Colloid Interface Sci, 2017, 498: 136-143. [8]Li S S, Xie Y, Xiang T, et al. Heparin-mimicking polyethersulfone membranes-hemocompatibility, cytocompatibility, antifouling and antibacterial properties[J]. J Membr Sci, 2016, 498: 135-146. [9]Cheng C, He A, Nie C X, et al. One-pot cross-linked copolymerization for the construction of robust antifouling and antibacterial composite membranes[J]. J Mater Chem B, 2015, 3(20): 4170-4180. [10]Wang K Z, Wang S H, Gu K F, et al. Ultra-low pressure PES ultrafiltration membrane with high-flux and enhanced anti-oil-fouling properties prepared via in-situ polycondensation of polyamic acid[J]. Sci Total Environ, 2022, 842: 156661. [11]Wang J X, Liu Z Y, Qiu M, et al. Heparin-mimicking semi-interpenetrating composite membrane with multiple excellent performances for promising hemodialysis[J]. J Membr Sci, 2021, 618:118740. [12]Mora A S, Tayouo R, Boutevin B, et al. A perspective approach on the amine reactivity and the hydrogen bonds effect on epoxy-amine systems[J]. Eur Polym J, 2020, 123: 109460. [13]高海富, 刘四华, 厍景国,等. 胺类化合物对聚氯乙烯膜的亲水化改性研究[J].膜科学与技术, 2022, 42(6):7-13. [14]汤超, 刘四华, 张仁伟,等. 改性CNC对聚氯乙烯超滤膜性能的影响[J].膜科学与技术, 2020, 40(5):9-15. [15]Shen J F, Huang W S, Wu L P, et al. Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes[J]. Compos Part A Appl Sci Manuf, 2007, 38(5): 1331-1336. [16]Deng J, Dai Z D, Yan J Q, et al. Facile and solvent-free fabrication of PEG-based membranes with interpenetrating networks for CO2 separation[J]. J Membr Sci, 2019, 570: 455-463. [17]Lei H, Zhan W, Peng S, A precise combined complete blocking and cake filtration model for describing the flux variation in membrane filtration process with BSA solution[J]. J Membr Sci, 2017, 542: 186-194. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号