高盐有机废水超滤处理的膜污染机制和分离效果研究
作者:王远远, 王仪, 黄思怡, 蔡玮玮
单位: 北京理工大学 化学与化工学院
关键词: 高盐有机废水; 超滤; 膜污染; 阴离子; 有机污染物
DOI号: 10.16159/j.cnki.issn1007-8924.2024.06.004
分类号: TQ028.8
出版年,卷(期):页码: 2024,44(6):26-36

摘要:
高盐有机废水处理是目前行业重点、难点问题,超滤技术已广泛应用于去除高盐有机废水中的有机污染物,但高盐环境下超滤膜污染的形成机制尚不清晰.本研究以腐殖酸(HA)和牛血清蛋白(BSA)为代表污染物,探究了NaCl、Na2SO4、Na3PO4高盐环境对超滤膜污染形成及有机物分离效果的影响.结果表明,由于Na+的静电屏蔽效应,HA和BSA表面电位和分子尺寸显著增大,而阴离子对于Na+屏蔽具有削弱作用,且阴离子价态越高,削弱作用越强.3种高盐环境均加剧了HA膜污染形成,而NaCl和Na2SO4减弱了BSA膜污染形成.膜污染层表面出现了大量块状颗粒,且随着阴离子价态升高,颗粒形态更规整、大小更均一.高盐环境下膜对有机污染物截留率显著下降,对于高盐有机废水处理产生不利影响.
 
The treatment of high-saline organic wastewater is currently a major and challenging issue in the industry. Ultrafiltration technology has been prevalently employed to remove organic pollutants from high-saline organic wastewater, while the mechanism of ultrafiltration membrane fouling formation under high salinity is not clarified. Humic acid (HA) and bovine serum albumin (BSA) were used as representative organic pollutants to investigate the influences of high-saline conditions of NaCl, Na2SO4, and Na3PO4 on the formation of membrane fouling and separation effectiveness of organic substances. The results showed that the zeta potential and molecular sizes of HA and BSA were increased significantly due to the Na+ electrostatic shielding effect. However, the anions weakened the shielding effect of Na+, with the stronger action exerted by the anions with higher valence state. All of the three high-saline conditions aggravated the formation of HA membrane fouling, while NaCl and Na2SO4 environments alleviated the membrane fouling formed by BSA. Substantial block-like particles appeared on the surface of membrane fouling layer, and the particle morphology tended to be more regular and uniform in size with the increased anion valence. The membrane rejection rates for organic pollutants decreased remarkably under high-saline environments, which indeed posed adverse impacts on the treatment of high-saline organic wastewater. 
 

基金项目:
国家重点研发计划项目(2021YFC2102203)

作者简介:
王远远(2001-),男,贵州毕节人,硕士研究生,研究方向为膜污染及其控制策略

参考文献:
[1]Lefebvre O, Moletta R. Treatment of organic pollution in industrial saline wastewater: a literature review[J]. Water Res, 2006, 40(20): 3671-3682.
[2]Song Q, Chen X, Zhou W, et al. Application of a spiral symmetric stream anaerobic bioreactor for treating saline heparin sodium pharmaceutical wastewater: Reactor operating characteristics, organics degradation pathway and salt tolerance mechanism[J]. Water Res, 2021, 205:117611.
[3]胡景泽, 王庆吉, 谢加才, 等. 石油石化含盐有机废水脱盐处理技术及资源化研究进展[J]. 工业水处理,2024,44(1): 32-43.
[4]李子未, 封丽, 许林季, 等. 酱腌菜加工废水处理技术综述[J]. 三峡生态环境监测, 2019, 4(4): 57-64.
[5]Song Q, Chen X, Hua Y, et al. Biological treatment processes for saline organic wastewater and related inhibition mechanisms and facilitation techniques: A comprehensive review[J]. Environ Res, 2023, 239:117404.
[6]Li J, Jiang C, Shi W, et al. Polytetrafluoroethylene (PTFE) hollow fiber an MBR performance in the treatment of organic wastewater with varying salinity and membrane cleaning behavior[J]. Bioresource Technol, 2018, 267: 363-370.
[7]Liu F, Tu Y, Chen J, et al. Treatment of saline organic wastewater by heterogeneous catalytic ozonation with Al2O3-PEC-CaxOy as catalysts [J]. Chem Eng J Adv, 2023, 14:100447.
[8]Qu Y, Guan Q, Du Y, et al. Insight into the effect of rice-straw ash on enhancing the anaerobic digestion performance of high salinity organic wastewater [J]. Chemosphere, 2023, 340:139920.
[9]Tang W, Wu M, Lou W, et al. Role of extracellular polymeric substances and enhanced performance for biological removal of carbonaceous organic matters and ammonia from wastewater with high salinity and low nutrient concentrations [J]. Bioresource Technol, 2021, 326:124764.
[10]Yang K, Wang C, Chen Y, et al. Separation and recovery of alkali cellulose wastewater with high concentration of salts by cross-linked poly(vinyl alcohol)/polytetrafluoroethylene ultrafiltration membrane[J]. J Water Process Eng, 2021, 43:102238.
[11]Zhang X Y, Wang T, Wu L G, et al. Construction of Ag@ZIF-8/PVDF mixed-matrix ultrafiltration membranes with high separation performance for dye from high-salinity wastewater by microemulsion coupling with blending[J]. J Membr Sci, 2023, 670:121373.
[12]Shi X, Tal G, Hankins N P, et al. Fouling and cleaning of ultrafiltration membranes: A review[J]. J Water Process Eng, 2014, 1: 121-138.
[13]Ahn W Y, Kalinichev A G, Clark M M. Effects of background cations on the fouling of polyethersulfone membranes by natural organic matter: Experimental and molecular modeling study[J]. J Membr Sci, 2008, 309(1/2): 128-140.
[14]Ding A, Ren Z, Hu L, et al. Oxidation and coagulation/adsorption dual effects of ferrate (Ⅵ) pretreatment on organics removal and membrane fouling alleviation in UF process during secondary effluent treatment [J]. Sci Total Environ, 2022, 850:157986.
[15]Miao R, Wang L, Deng D, et al. Evaluating the effects of sodium and magnesium on the interaction processes of humic acid and ultrafiltration membrane surfaces[J]. J Membr Sci, 2017, 526: 131-137.
[16]Wang Y, Zheng X, Li D, et al. Effect of sodium and potassium on polysaccharide fouling on PVDF and graphene oxide modified PVDF membrane surfaces[J]. Process Safety  Environ Protect, 2022, 165: 387-395.
[17]Wang Y, Zheng X, Li D, et al. Comparison of membrane fouling induced by protein, polysaccharide and humic acid under sodium and calcium ionic conditions[J]. Desalination, 2023, 548:116236.
[18]Zhai Y, Bai D, Wang Y, et al. Effect of Na+ on organic fouling depends on Na+ concentration and the property of the foulants[J]. Desalination, 2022, 531:115709.
[19]He X, Meng F, Lin A, et al. Monovalent ion-mediated fouling propensity of model proteins during low-pressure membrane filtration[J]. Sep Purif Technol, 2015, 152: 200-206.
[20]崔凤国, 杨鹏, 张伟军, 等. 混凝和活性炭吸附深度处理制药废水中有机物去除特征[J]. 环境工程学报, 2015, 9(9): 4359-4364.
[21]王燕翔, 郑利兵, 钟慧, 等. 煤化工废水高效反渗透工艺运行效果及膜污染特征[J]. 环境工程学报, 2024, 18(1): 101-109.
[22]范春辉, 张颖超, 杜波, 等. 制革废水处理过程溶解性有机物的光谱特性研究[J]. 光谱学与光谱分析, 2015, 35(6): 1587-1591.
[23]Lee S Y, Stuckey D C. Separation and biosynthesis of value-added compounds from food-processing wastewater: Towards sustainable wastewater resource recovery[J]. J Cleaner Product, 2022, 357:131975.
[24]Lowry O, Rosebrough N, Farr A L, et al. Protein measurement with the folin phenol reagent[J]. J Biolog Chem, 1951, 193(1): 265-275.
[25]Fujioka T, Khan S J, Mcdonald J A, et al. Rejection of trace organic chemicals by a hollow fibre cellulose triacetate reverse osmosis membrane[J]. Desalination, 2015, 368: 69-75.
[26]Zhang T, Wang Q, Yang Y, et al. Revealing the contradiction between DLVO/XDLVO theory and membrane fouling propensity for oil-in-water emulsion separation [J]. J Hazard Mater, 2024, 466:13594.
[27]Tong C Y, Derek C J C. Marine microalgal biofilm development and its adhesion propensities on commercial membrane via XDLVO approach[J]. J Biotechnol, 2022, 360: 37-44.
[28]Liu J, Fan Y, Sun Y, et al. Modelling the critical roles of zeta potential and contact angle on colloidal fouling with a coupled XDLVO-collision attachment approach[J]. J Membr Sci, 2021, 623:119048.
[29]刘紫文, 王磊, 苗瑞,等. 用微观作用力解析无机离子对腐殖酸的膜污染行为影响[J]. 环境工程学报, 2015, 9(2): 531-536.
[30]Cai W, Gao Z, Yu S, et al. New insights into membrane fouling formation during ultrafiltration of organic wastewater with high salinity[J]. J Membr Sci, 2021, 635:106153.
[31]Pan M K, Zhou F F, Liu Y, et al. Na+-induced gelation of a low-methoxyl pectin extracted from Premna microphylla Turcz[J]. Food Hydrocolloids, 2021, 110:106153.
[32]Maruthamuthu P, Neta P. Phosphate radicals-spectra, acid-base equilibria, and reactions with inorganic-compounds[J]. J Phys Chem, 1978, 82(6): 710-713.
[33]Zularisam A W, Ahmad A, Sakinah M, et al. Role of natural organic matter (NOM), colloidal particles, and solution chemistry on ultrafiltration performance[J]. Sep Purif Technol, 2011, 78(2): 189-200.
[34]Arroyave J M, Waiman C C, Zanini G P, et al. Effect of humic acid on the adsorption/desorption behavior of glyphosate on goethite. Isotherms and kinetics[J]. Chemosphere, 2016, 145: 34-41.
[35]Zhang J, Chen L, Yin H, et al. Mechanism study of humic acid functional groups for Cr(Ⅵ) retention: Two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis[J]. Environ Pollut, 2017, 225: 86-92.
[36]Givens B E, Xu Z, Fiegel J, et al. Bovine serum albumin adsorption on SiO2 and TiO2 nanoparticle surfaces at circumneutral and acidic pH: A tale of two nano-bio surface interactions[J]. J Colloid  Interface Sci, 2017, 493: 334-341.
[37]Cai W, Zhang J, Li Y, et al. Characterizing membrane fouling formation during ultrafiltration of high-salinity organic wastewater[J]. Chemosphere, 2022, 287: 132057.
[38]Saravia F, Zwiener C, Frimmel F H. Interactions between membrane surface, dissolved organic substances and ions in submerged membrane filtration[J]. Desalination, 2006, 192(1/2/3): 280-287.
[39]Kang Y, Jiao S, Zhao Y, et al. High-flux and high rejection TiO2 nanofibers ultrafiltration membrane with porous titanium as supporter[J]. Sep Purif Technol, 2020, 248:117000.
[40]Jiang J, Ni N, Xiao W, et al. Robust ceramic nanofibrous membranes with ultra-high water flux and nanoparticle rejection for self-standing ultrafiltration[J]. J Eur Ceram Soc, 2021, 41(7): 4264-4272.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号