氨基改性ZIF-8及聚酰亚胺混合基质膜的制备
作者:李洪峰, 周香
单位: 国电环境保护研究院有限公司
关键词: 聚酰亚胺; 气体分离膜; ZIF-8; 混合基质膜; 氨基改性
DOI号: 10.16159/j.cnki.issn1007-8924.2024.06.005
分类号: TQ028.8
出版年,卷(期):页码: 2024,44(6):37-44

摘要:
采用滴涂法,将自制氨基化的金属有机骨架材料(MOF)、ZIF-8-NH2与共聚聚酰亚胺(PI,m6FDA-DAM∶mDABA=3∶2)混合,制备聚酰亚胺混合基质膜.通过研究混合基质膜的微观结构、红外、气体分离性能等,考察ZIF-8-NH2掺杂含量对MOF/PI混合基质膜结构和性能的影响.结果表明:自制的ZIF-8-NH2材料的粒径约为70 nm,与PI混合均匀.当ZIF-8-NH2质量分数达到15 %时,混合基质膜的气体分离性能最佳,CO2渗透系数为206.91 Barrer,在保持较高气体渗透通量的同时其选择性达到66.39,CO2/CH4分离性能超过2008年Robeson 上限.
 

In this paper, the polyimide mixed matrix membrane was prepared by mixing the homemade aminated ZIF-8-NH2 particles with co-polyimide [PI, 6FDA-DAM/DABA (3∶2)] using a drop-coating method. The effects of ZIF-8-NH2 doping content on the structure and properties of MOF/PI mixed matrix membranes were investigated by studying the results of microstructure, infrared,  and gas separation performance properties of the mixed matrix membranes. The results showed that the homemade ZIF-8-NH2 material had a particle size of about 70 nm and was mixed with polyimide (PI) uniformly. When the mass concentration of ZIF-8-NH2 reached 15%, the mixed matrix membrane had the best performance in separation, with a CO2 permeation coefficient of 206.91 Barrer, and its selectivity reached 66.39 while maintaining a high gas permeation flux, and the separation performance to CO2/CH4 system exceeded the Robeson 2008 upper limit. 
 

基金项目:
基于电吸附浓缩+高低温烟气耦合干燥脱硫废水零排放技术研究项目(HB2023Y02)

作者简介:
李洪峰(1979-),男,黑龙江哈尔滨人,大学本科,主要研究方向为水处理、腐蚀与防护,E-mail:12106739@ceic.com

参考文献:
[1]Allouhi A, El Fouih Y, Kousksou A, et al. Energy consumption and efficiency in buildings: Current status and future trends[J]. J Clean Prod, 2015, 109: 118-130.
[2]BP’s Economics Team. Key World Eneergy Statistics, Statistical Review of World Energy[R]. London:BP, 2020.
[3]Cronshaw I. World Energy Outlook 2014 projections to 2040: Natural gas and coal trade, and the role of China[J]. Aust J Agr Resour Ec, 2015, 59(4) : 571-585.
[4]王伟胜. 我国新能源消纳面临的挑战与思考[J]. 电力设备管理, 2021, 52(1): 22-23.
[5]Alcheikhhamdon Y, Hoorfar M. Natural gas purification from acid gases using membranes: A review of the history, features, techno-commercial challenges, and process intensification of commercial membranes[J]. Chem Eng Process: Process Intensif, 2017, 120: 105-113.
[6]刘露,段振红,贺高红. 天然气脱除CO2 方法的比较与进展[J]. 化工进展, 2009, 28:290-292. 
[7]彭福兵, 刘家祺. 气体分离膜材料研究进展[J]. 化工进展, 2002, (11) : 820-823.
[8]Huang L, Lin H. Engineering sub-nanometer channels in two-dimensional materials for membrane gas separation[J]. Membranes, 2018, 8:100.
[9]Shen J, Wang F Y, He J H. Primary study of ethyl cellulose nanofiber for oxygen-enrichment membrane[J]. Therm Sci, 2016, 20(3) : 1008-1009.
[10]Voigt C C, Matt F. Nitrogen stress causes unpredictable enrichments of 15N in two nectar-feeding bat species[J]. J Exp Biol, 2004, 207 : 1741-1748.
[11]Haszeldine R S. Carbon capture and storage: how green can black be?[J]. Science, 2009, 325(5948) : 1647-1652.
[12]Rochelle G T. Amine scrubbing for CO2 capture[J]. Science, 2009, 325(5948) : 1652-1654.
[13]D’Alessandro D M, Smit B, Long J R. Carbon dioxide capture: prospects for new materials[J]. Angew Chem Int Ed, 2010, 49(35) : 6058-6082.
[14]Bae Y S, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angew Chem Int Ed, 2011, 50(49) : 11586-11596.
[15]Chen X, Qi H, Zhang Y, et al. Optimal design of a two-stage mounting isolation system by the maximum entropy approach[J]. J Sound  Vib, 2001, 243(4) : 591-599.
[16]郑宁来. 霍尼韦尔UOP和卡塔尔石油研发天然气处理新技术[J]. 炼油技术与工程, 2014, (7): 44-44.
[17]Yu S, Lia S, Huang S, et al. Covalently bonded zeolitic imidazolate frameworks and polymers with enhanced compatibility in thin film nanocomposite membranes for gas separation[J]. J Membr Sci, 2017, 540: 155-164.
[18]Nafisi V, Hagg M B. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture[J]. J Membr Sci, 2014, 459: 244-255.
[19]Zhao Q, Sun Y, Zhang J, et al. Mixed matrix membranes incorporating amino-functionalized ZIF-8-NH2 in a carboxylic polyimide for molecularly selective gas separation[J]. J Membr Sci, 2024, 693: 122326.
[20]Dong G X, Li H Y, Chen V K. Challenges and opportunities for mixed-matrix membranes for gas separation[J]. J Mater Chem A, 2013, 1(15) : 4610-4630.
[21]Dai Y, Ruan  X H, Yan Z Y, et al. Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture[J]. Sep Purif Technol, 2016, 166: 171-180.
[22]Lin R J, Hernandez B V,  Ge L, et al. Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces[J]. J Mater Chem A, 2018, 6(2) : 293-312.
[23]Jo J H, Lee C O, Ryu G Y, et al. Hierarchical amine-functionalized ZIF-8 mixed-matrix membranes with an engineered interface and transport pathway for efficient gas separation[J]. ACS Appl Polym Mater, 2022, 4(9) : 6426-6439.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号