端基接枝对半芳香纳滤膜的耐氯性能影响
作者:王源1, 李梦菲23, 王志强3, 杨少霞2, 王小亻毛3
单位: 1. 深圳市利源水务设计咨询有限公司, 深圳 518034; 2. 华北电力大学 水利与水电工程学院, 北京 102206;3. 清华大学 环境学院, 北京 100084
关键词: 半芳香纳滤膜; 氯化; 截留率; 接枝; 能垒
DOI号: 10.16159/j.cnki.issn1007-8924.2024.06.006
分类号: TQ028; TU991.2
出版年,卷(期):页码: 2024,44(6):45-54

摘要:
半芳香聚酰胺纳滤膜因其高截留选择性、大水通量、易集成和放大等优势,在饮用水处理中扮演重要角色.然而,聚酰胺膜对活性氯的耐受性较低,限制了其广泛应用.本文探讨了乙二酰氯和磺酰氯接枝对提升膜耐氯性能的效果.乙二酰氯接枝后的自制膜NFlab对木糖和Mg2+的截留率下降,耐氯性能略有提升,而接枝后的商业化膜NFH的耐氯性则因有机溶剂造成的膜溶胀而显著下降.磺酰氯接枝基本不改变原膜的过滤性能,接枝后NFlab的耐氯性能有显著提升.对膜单体的DFT计算表明,酰胺N是次氯酸的主要反应位点,接枝并未显著改变单体的几何构型和反应位点,但略微增加了酰胺N的负电荷.过渡态优化显示,磺酰氯接枝提高了酰胺键与次氯酸反应的能垒,这有助于提升膜的耐氯性能.
 
Semi-aromatic polyamide nanofiltration membranes play a crucial role in drinking water treatment due to their high retention selectivity, large water flux, ease of integration, and scalability. However, their low resistance to active chlorine limits widespread application. This study investigated the effects of grafting with oxalyl chloride and sulfonyl chloride on enhancing membrane chlorine resistance. Grafting with oxalyl chloride decreased retention rates for xylose and Mg2+, albeit with slightly improved chlorine resistance in lab-made NFlab membranes. In addition, commercial NFH membranes exhibited significantly reduced chlorine resistance after oxalyl chloride grafting. Sulfonyl chloride grafting maintained the filtration performance of the original membrane and notably enhanced chlorine resistance in NFlab membranes. DFT calculations on membrane monomers revealed that the nitrogen in the amide bond was a primary reactive site for hypochlorous acid. Grafting led to minor changes in geometric configuration and reaction sites but increased the negative charge on the amide nitrogen. Transition state optimizations demonstrated that sulfonyl chloride grafting increased the reaction barrier for amide bond with hypochlorous acid, thereby improving membrane chlorine resistance.
 

基金项目:
国家重点研发计划项目基金(2022YFC3202904)

作者简介:
王源(1988-),男,山东聊城人,工程师,硕士,研究方向包括给排水工程设计、供水安全保障、水污染控制等

参考文献:
[1]Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356: 226-254.
[2]Pearce G K. Introduction to membranes: Filtration for water and wastewater treatment[J]. Filtr Separat, 2007, 44: 24-27.
[3]Stevens D M, Shu J Y, Reichert M, et al. Next-generation nanoporous materials: Progress and prospects for reverse osmosis and nanofiltration[J]. Ind Eng Chem Res, 2017, 56(38): 10526-10551.
[4]侯琴, 衣刚, 卢彦斌, 等. 一种耐氯性聚酰胺纳滤膜制备及耐氯性评价[J]. 膜科学与技术, 2023, 43(4): 69-74.
[5]Zhou Z, Lu D, Li X, et al. Fabrication of highly permeable polyamide membranes with large “leaf-like” surface nanostructures on inorganic supports for organic solvent nanofiltration[J]. J Membr Sci, 2020, 601: 117932.
[6]Coronell O, Marias B J, Cahill D G. Depth heterogeneity of fully aromatic polyamide active layers in reverse osmosis and nanofiltration membranes[J]. Environ Sci Tech, 2011, 45(10): 4513-4520.
[7]Zhao Y, Tong X, Chen Y. Fit-for-purpose design of nanofiltration membranes for simultaneous nutrient recovery and micropollutant removal[J]. Environ Sci Tech, 2021, 55(5): 3352-3361.
[8]Kucera J. Biofouling of polyamide membranes: Fouling mechanisms, current mitigation and cleaning strategies, and future prospects[J]. Membranes, 2019, 9(9): 111.
[9]Bucs S S, Farhat N, Kruithof J C, et al. Review on strategies for biofouling mitigation in spiral wound membrane systems[J]. Desalination, 2018, 434: 189-197.
[10]Huang J, Luo J, Chen X, et al. How do chemical cleaning agents act on polyamide nanofiltration membrane and fouling layer?[J]. Ind Eng Chem Res, 2020, 59(40): 17653-17670.
[11]Gohil J M, Suresh A K. Chlorine attack on reverse osmosis membranes: Mechanisms and mitigation strategies[J]. J Membr Sci, 2017, 541: 108-126.
[12]李梦菲, 杨少霞, 杨宏伟, 等. 哌嗪聚酰胺纳滤膜的氯氧化特性及机理[J]. 膜科学与技术, 2023, 43(1): 27-36.
[13]Do V T, Tang C Y, Reinhard M, et al. Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite[J]. Environ Sci Tech, 2012, 46(2): 852-859.
[14]Do V T, Tang C Y, Reinhard M, et al. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane-mechanisms and implications[J]. Environ Sci Tech, 2012, 46(24): 13184-13192.
[15]Simon A, McDonald J A, Khan S J, et al. Effects of caustic cleaning on pore size of nanofiltration membranes and their rejection of trace organic chemicals[J]. J Membr Sci, 2013, 447: 153-162.
[16]Gaudichet-Maurin E, Thominette F. Ageing of polysulfone ultrafiltration membranes in contact with bleach solutions[J]. J Membr Sci, 2006, 282(1): 198-204.
[17]Rouaix S, Causserand C, Aimar P. Experimental study of the effects of hypochlorite on polysulfone membrane properties[J]. J Membr Sci, 2006, 277(1): 137-147.
[18]García-Pacheco R, Landaburu-Aguirre J, Lejarazu-Larraaga A, et al. Free chlorine exposure dose (ppm·h) and its impact on ro membranes ageing and recycling potential[J]. Desalination, 2019, 457: 133-143.
[19]Lee J H, Chung J Y, Chan E P, et al. Correlating chlorine-induced changes in mechanical properties to performance in polyamide-based thin film composite membranes[J]. J Membr Sci, 2013, 433: 72-79.
[20]Verbeke R, Gómez V, Koschine T, et al. Real-scale chlorination at pH4 of BW30 TFC membranes and their physicochemical characterization[J]. J Membr Sci, 2018, 551: 123-135.
[21]Liu S, Wu C, Hou X, et al. Understanding the chlorination mechanism and the chlorine-induced separation performance evolution of polypiperazine-amide nanofiltration membrane[J]. J Membr Sci, 2019, 573: 36-45.
[22]嵇华忠, 韩家凯, 钱璟俐, 等. 表面接枝TAPI改善聚酰胺纳滤膜的耐氯性能[J]. 膜科学与技术, 2023, 43(2): 87-94.
[23]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16 rev. C.01[CP]. Wallingford, CT, 2016.
[24]Krishnan R, Binkley J S, Seeger R, et al. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions[J]. J Chem Phys, 1980, 72, (1): 650-654.
[25]McLean A D, Chandler G S. Contracted gaussian basis sets for molecular calculations. I. Second row atoms, z=11-18[J]. J Chem Phys, 1980, 72(10): 5639-5648.
[26]Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Phys Rev B, 1988, 37(2): 785-789.
[27]Binning J R C, Curtiss L A. Compact contracted basis sets for third-row atoms: Ga-kr[J]. J Comput Chem, 1990, 11(10): 1206-1216.
[28]Becke A D. Density-functional thermochemistry. Iii. The role of exact exchange[J]. J Chem Phys, 1993, 98(7): 5648-5652.
[29]Marenich A V, Cramer C J, Truhlar D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. J Phys Chem B, 2009, 113(18): 6378-6396.
[30]Fukui K. The path of chemical reactions-the irc approach[J]. Acc Chem Res, 1981, 14(12): 363-368.
[31]Tansel B, Sager J, Rector T, et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes[J]. Sep Purif Technol, 2006, 51(1): 40-47.
[32]Li M F, Yang S X, Fu W J, et al. Chlorine degradation of semi-aromatic polypiperazine-amide membranes and the mechanisms[J]. J Membr Sci, 2024, 696: 122469.
[33]Fu W, Li B, Yang J, et al. New insights into the chlorination of sulfonamide: Smiles-type rearrangement, desulfation, and product toxicity[J]. Chem Eng J, 2018, 331: 785-793.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号