基于纳滤的火电厂循环冷却水分质浓缩研究
作者:宋肖磊1 , 梁帅1, 辛宇晨1, 余智勇2, 丁昊杰3, 李业4, 周建文5, 黄霞3
单位: 1. 北京林业大学 环境科学与工程学院, 北京 100083; 2. 苏州青骐骥科技(集团)有限公司, 苏州 215200; 3. 清华大学 环境学院, 北京 100084; 4. 中国华能集团清洁能源技术研究院有限公司, 北京 102209; 5. 中国华能锡林郭勒热电有限责任公司, 锡林浩特 026000
关键词: 火电厂; 循环冷却水; 纳滤; 选择性分离; 水回用
DOI号: 10.16159/j.cnki.issn1007-8924.2024.06.010
分类号: TQ028.3
出版年,卷(期):页码: 2024,44(6):78-87

摘要:
 
推进分质梯级用水和废水近零排放是当前火力发电行业绿色转型阶段的重要发展方向.火电厂循环冷却水因水量大但循环利用不足而成为当前发展面临的瓶颈问题.本研究针对循环冷却水水质特点,提出基于纳滤技术进行冷却水分质浓缩的处理方案.对一、二价离子进行选择性分离,将富含Ca2+、Mg2+的浓水用于辅助烟气脱硫;将净水回用于循环冷却工段,旨在控制冷却塔结垢等问题的同时,提升火电厂整体水资源利用率.系统对比了5种商业纳滤膜(NF245、NF270、DF30、DF90、XCN)的分质浓缩特性.优选并使用XCN膜对实际循环冷却水进行纳滤分质浓缩,在10%水回收率时可实现对Ca2+、Mg2+大于97%的高截留,而对Na+的截留率稳定在20%,离子选择性SNa/Mg和SNa/Ca分别可达36.7和30.5,展现出良好的应用潜力.

 

 
Promoting quality-based and gradient water usage and near-zero wastewater discharge is an important development content in the current green transformation stage of the thermal power industry. The circulating cooling water of thermal power plants has become a bottleneck due to its large volume but insufficient recycling and reuse. In this study, based on the characteristics of circulating cooling water quality, the concentration treatment of cooling water was proposed based on nanofiltration technology, the selective separation of mono-/di-valent ions was carried out, the concentrated water rich in Ca2+ and Mg2+ was used for auxiliary flue gas desulfurization, and the clean water was returned to the circulating cooling section, aiming at controlling the scaling problems of cooling towers and improving the overall utilization rate of water resources in thermal power plants. In this study, the mass concentration characteristics of five commercial nanofiltration membranes (NF245, NF270, DF30, DF90 and XCN) were compared. The XCN membrane was selected and used for nanofiltration separation treatment of practical circulating cooling water, which could achieve high rejection of Ca2+ and Mg2+ greater than 97%, while the rejection rate of Na+ was stable at 20%. At 10% water recovery, the ion selectivity of SNa/Mg and SNa/Ca could reach up to 36.7 and 30.5, showing good application potential. 
 

基金项目:
华能集团总部科技项目“基础能源科技研究专项(三)(HNKJ22-H105)”资助

作者简介:
宋肖磊(1999-),男,北京人,硕士研究生,研究方向为膜法水处理技术

参考文献:
[1]Ahmad N N R, Ang W L, Leo C P, et al. Current advances in membrane technologies for saline wastewater treatment: A comprehensive review[J]. Desalination, 2021, 517: 115170.
[2]Huang L, Wang D, He C, et al. Industrial wastewater desalination under uncertainty in coal-chemical eco-industrial parks[J]. Resour Conserv Recy, 2019, 145: 370-378.
[3]Xu Y, Chen K, Yan C, et al. Waste into treasure: New insight to inhibit scale generation in industrial circulating cooling water[J]. Results Eng, 2023, 19: 101326.
[4]Zhu H, Zheng F, Lu S, et al. Effect of electrochemical pretreatment on the control of scaling and fouling caused by circulating cooling water on heat exchanger and side-stream reverse osmosis membrane[J]. J Water Process Eng, 2021, 43: 102261.
[5]Liu Y, Gao G, Vecitis C D. Prospects of an electroactive carbon nanotube membrane toward environmental applications[J]. Acc Chem Res, 2020, 53(12): 2892-2902.
[6]Liang J, Tian Y, Yang S, et al. Long-term operation optimization of circulating cooling water systems under fouling conditions[J]. Chinese J Chem Eng, 2024, 65: 255-267.
[7]Jaouhari R, Benbachir A, Guenbour A, et al. Influence of water composition and substrate on electrochemical scaling[J]. J Electrochem Soc, 2000, 147(6): 2151.
[8]董恩氚, 肖兰芳, 唐支林,等. 高浓缩倍数条件下的循环冷却水处理分析与对策[J]. 冶金动力, 2024, 01: 40-43.
[9]Awais M, Bhuiyan A A. Recent advancements in impedance of fouling resistance and particulate depositions in heat exchangers[J]. Int J Heat Mass Tran, 2019, 141: 580-603.
[10]Shinde R, Shivansh, Shastri Y, et al. Quantification of climate change-driven water stress on thermal power plants in India[J]. Comput Chem Eng, 2023, 179: 108454.
[11]李国斌, 牛征, 谢强,等. 西北地区某大型调相机外冷系统结垢成因解析与防垢对策研究[J]. 热力发电, 2024, 53(3), 167-176.
[12]Rahimpour A, Jahanshahi M, Mortazavian N, et al. Preparation and characterization of asymmetric polyethersulfone and thin-film composite polyamide nanofiltration membranes for water softening[J]. Appl Surf Sci, 2010, 256(6), 1657-1663.
[13]Zheng J, Zhang X, Li G, et al. Selective removal of heavy metals from saline water by nanofiltration[J]. Desalination, 2022, 525: 115380.
[14]Abdel-Fatah M A. Nanofiltration systems and applications in wastewater treatment: Review article[J]. Ain Shams Eng J, 2018, 9(4): 3077-3092.
[15]李启辉. 煤化工废水处理及资源化利用研究现状[J]. 应用化工, 2023, 52(7): 2234-2238,2243.
[16]Zhang Y, Wang L, Sun W, et al. Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review[J].J Ind Eng Chem, 2020, 81: 7-23.
[17]Zhao W, Gong H, Song Y, et al. Hierarchically designed salt-resistant solar evaporator based on Donnan effect for stable and high-performance brine treatment[J]. Adv Funct Mater, 2021, 31(23): 2100025.
[18]Zheng J, Liu Y, Zhu J, et al. Sugar-based membranes for nanofiltration[J]. J Membr Sci, 2021, 619: 118786.
[19]Zhang H, He Q, Luo J, et al. Sharpening nanofiltration: Strategies for enhanced membrane selectivity[J]. ACS Appl Mater Interfaces, 2020, 12(36): 39948-39966.
[20]Zhang T, Zheng W, Wang Q, et al. Designed strategies of nanofiltration technology for Mg2+/Li+ separation from salt-lake brine: A comprehensive review[J]. Desalination, 2023, 546: 116205.
[21]Li Y, Ma Y, Dai J, et al. Nanofiltration membrane with surface nanostructure induced by interfacial modification for heavy metal ions removal, salt selection and antibacterial[J]. J Environ Chem Eng, 2024, 12(2): 112439.
[22]汤清晨. 薄层复合聚哌嗪酰胺纳滤膜的构建及性能研究[D]. 上海: 东华大学, 2023.
[23]张云帆. 基于迈克尔加成的哌嗪基聚酰胺的制备与性能研究[D]. 北京: 北京化工大学, 2021.
[24]Feng Y, Peng H, Zhao Q. Fabrication of high performance Mg2+/Li+ nanofiltration membranes by surface grafting of quaternized bipyridine[J]. Sep Purif Technol, 2022, 280: 119848.
[25]王英伟, 张萌萌, 蒋驰,等. 聚哌嗪酰胺原生荷正电纳滤膜的制备与性能研究[J]. 膜科学与技术, 2023, 43(2): 41-48.
[26]Wang M, Dong W, Guo Y, et al. Positively charged nanofiltration membranes mediated by a facile polyethyleneimine-Noria interlayer deposition strategy[J]. Desalination, 2021, 513: 114836.
[27]Contreras A E, Steiner Z, Miao J, et al. Studying the role of common membrane surface functionalities on adsorption and cleaning of organic foulants using QCM-D[J]. Environ Sci Technol, 2011, 45(15): 6309-6315.
[28]鲁丹, 向昕辰, 耿艺方,等. 面向盐湖提锂的聚酰胺纳滤膜设计策略[J]. 盐湖研究, 2024.
[29]Wang R, He R, He T, et al. Performance metrics for nanofiltration-based selective separation for resource extraction and recovery[J]. Nat Water, 2023, 1(3): 291-300.
[30]Jiang C, Fei Z, Zhang M, et al. Poly(piperazine-amide) nanofiltration membrane with innate positive charge for enhanced bivalent cation rejection and mono/bivalent cation selectivity[J]. J Membr Sci, 2022, 664: 121060.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号