连续发酵-渗透汽化膜分离-分级冷凝集成制乙醇
作者:姜昊基, 王丁玎, 刘敬芸, 韩露, 刘闻达, 张尹, 肖泽仪, 樊森清
单位: 四川大学 化学工程学院
关键词: 木薯乙醇; 连续发酵; 渗透汽化; 产物抑制; 分级冷凝
DOI号: 10.16159/j.cnki.issn1007-8924.2024.06.011
分类号: TQ028.8; Q815
出版年,卷(期):页码: 2024,44(6):88-95

摘要:
本研究构建了木薯连续发酵、渗透汽化膜分离与分级冷凝集成系统,用于生产生物乙醇.渗透汽化膜分离可有效消除产物抑制,在长达500 h的发酵时间里,单位体积发酵液总耗糖量、平均糖耗速率、乙醇产量和乙醇产率分别达到420.9 g/L、1.92 g/(L·h)、165.3 g/L和0.81 g/(L·h).发酵残液的处理量相较常规连续发酵减少47.3%.平均膜通量和分离因子分别为654.3 g/(m2·h)和8.2,膜下游渗透蒸汽乙醇质量分数达18.8 %.在整个发酵过程中,占总产量88.2%的乙醇通过渗透汽化,以高浓度乙醇溶液的形式被回收.膜下游渗透蒸汽经过分级冷凝后,二级冷凝器中的平均乙醇质量分数被进一步提高至26.5%.
 
In the study, an integrated system was developed for the production of bioethanol by combining cassava continuous fermentation, pervaporation membrane separation and fractional condensation. Membrane separation  can mitigate ethanol product inhibition. In  the fermentation time of 500 h, total sugar consumption per unit volume of fermentation broth, average sugar consumption rate, ethanol production and ethanol productivity were 420.9 g/L, 1.92 g/(L·h), 165.3 g/L and 0.81 g/(L· h), respectively. The fermentation waste water to be treated was reduced by 47.3% compared with conventional continuous fermentation. The average membrane flux and separation factor were 654.3 g/(m2·h) and 8.2, respectively, with an ethanol concentration of 18.8% in the permeate. During the whole fermentation process, 88.2% of the total ethanol was collected in form of high-concentration ethanol solution by pervaporation. The average ethanol concentration in the secondary condenser increased to 26.5% after the permeate vapor on the downstream of the membrane was refined by fractional condenser. 
 

基金项目:
国家重点研发计划课题(2021YFC2101204); 中央高校基本科研业务费(20822041B4013, 2023SCU12080)

作者简介:
姜昊基(1992-),男,甘肃民勤人,博士研究生,研究方向为膜分离过程强化

参考文献:
[1]Wang C, Zeraati R S, Xiang L, et al. Ethanol blends in spark ignition engines: RON, octane-added value, cooling effect, compression ratio, and potential engine efficiency gain[J]. Appl Energy, 2017,191:603-619.
[2]Iodice P, Senatore A, Langella G, et al. Effect of ethanol-gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: an experimental investigation[J]. Appl Energy, 2016,179:182-190.
[3]Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel[J]. Appl Energy, 2009,86(11):2273-2282.
[4]Nguyen V D, Auresenia J, Kosuge H, et al. Vacuum fermentation integrated with separation process for ethanol production[J]. Biochem Eng J, 2011, 553:208-214.
[5]Toraya-Avilés R, Segura-Campos M, Chel-Guerrero L, et al. Effects of pyroconversion and enzymatic hydrolysis on indigestible starch content and physicochemical properties of cassava (Manihot esculenta) starch[J]. Starch, 2017, 69(5/6):1600267.
[6]Elliston A, Collins S R A, Wilson D R, et al. High concentrations of cellulosic ethanol achieved by fed batch semi simultaneous saccharification and fermentation of waste-paper[J]. Bioresource Technol, 2013, 134:117-126.
[7]Shadbahr J, Zhang Y, Khan F, et al. Multi-objective optimization of simultaneous saccharification and fermentation for cellulosic ethanol production[J]. Renew Energy, 2018, 125:100-107.
[8]Marx S, Nquma T Y.Cassava as feedstock for ethanol production in South Africa[J]. African J Biotechnol, 2013, 12(31):4975-4983.
[9]Kim S, Kim S. Hybrid simulation framework for the production management of an ethanol biorefinery[J]. Renew Sustain Energy Rev, 2022,155:111911.
[10]Jin Q, An Z, Damle A, et al. High acetone-butanol-ethanol production from food waste by recombinant clostridium saccharoperbutylacetonicum in batch and continuous immobilized-cell fermentation[J]. ACS Sustain Chem Eng, 2020,826:9822-9832.
[11]Pradyawong S, Juneja A, Sadiq M, et al. Comparison of cassava starch with corn as a feedstock for bioethanol production[J]. Energies, 2018, 11(12):1-11.
[12]Woldemariam D, Kullab A, Khan E U, et al. Recovery of ethanol from scrubber-water by district heat-driven membrane distillation: Industrial-scale technoeconomic study[J]. Renew Energy, 2018,128:484-494.
[13]Cao Z, Xia C, Jia W, et al. Enhancing bioethanol productivity by a yeast-immobilized catalytically active membrane in a fermentation-pervaporation coupling process[J]. J Membr Sci, 2020, 595:117485.
[14]Fan S, Xiao Z, Li M, et al. Pervaporation membrane bioreactor with permeate fractional condensation and mechanical vapor compression for energy efficient ethanol production[J]. Appl Energy,2016,179:939-947.
[15]Fan S, Xiao Z, Zhang Y, et al. Enhanced ethanol fermentation in a pervaporation membrane bioreactor with the convenient permeate vapor recovery[J]. Bioresource Technol, 2014,155:229-234.
[16]Liu J, Fan S, Xiao Z. Enhanced coproduction and trade-off of the hydrogen and butanol in the coupled system of pervaporation and repeated-cycle fixed-bed fermentation[J]. Ind Crops  Prod, 2021, 161:113172.
[17]Lyra C B, Silva Z P R, Benathar B T L. Effect of phenolic compounds on bioconversion of glucose to ethanol by yeast Saccharomyces cerevisiae PE-2[J]. Canadian J Chem Eng, 2018, 967:1444-1450.
[18]Jiang H, Liu J, Liu W, et al. Bioethanol production from cassava fermentation in pervaporation membrane bioreactor fed with high concentration sugar[J]. Fuel, 2024,362:130744.
[19]Zhang Q, Nurhayati, Cheng C L, et al. Ethanol production by modified polyvinyl alcohol-immobilized Zymomonas mobilis and in situ membrane distillation under very high gravity condition[J]. Appl Energy, 2017, 202:1-5.
[20]Chovau S, Gaykawad S, Straathof A J J, et al. Influence of fermentation by-products on the purification of ethanol from water using pervaporation[J]. Bioresource Technol, 2011, 1022:1669-1674.
[21]Yi S, Qi B, Su Y, et al. Effects of fermentation by-products and inhibitors on pervaporative recovery of biofuels from fermentation broths with novel silane modified silicalite-1/PDMS/PAN thin film composite membrane[J]. Chem Eng J, 2015, 279:547-554.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号