超临界CO2制备壳聚糖/ 聚乙烯醇非对称膜及其性能研究 |
作者:翟晴晴1, 童欢2, 曾静2, 孙其勋1, 陈嘉琪1,吴仲岿1 |
单位: 1. 武汉理工大学 材料科学与工程学院, 武汉 430070; 2. 武汉市第三医院, 武汉 430070 |
关键词: 非对称膜; 聚乙烯醇; 壳聚糖; 超临界CO2 |
DOI号: 10.16159/j.cnki.issn1007-8924.2024.06.013 |
分类号: TQ028 |
出版年,卷(期):页码: 2024,44(6):107-114 |
摘要: |
非对称多孔膜类伤口敷料在治疗皮肤损伤方面有着非常重要的作用.目前,大多数非对称膜是通过干/湿相转化法制备而成,但该方法使用的溶剂和非溶剂大多具有细胞毒性,后续的干燥过程可能导致多孔结构坍塌.针对以上问题,此次研究以聚乙烯醇和壳聚糖为原料,通过超临界CO2相转化技术制备了一种非对称膜,并探究了不同质量分数铸膜液对膜的形貌结构和性能的影响规律.结果表明:所制备膜都具有明显的非对称结构,且非对称膜的力学性能(拉伸强度6.07~14.3 MPa,拉伸模量3.17~9.82 MPa)和吸水率(177.8%~254.0%)均在理想伤口敷料的期望范围内.随着铸膜液质量分数的增大,表层的致密程度和致密层厚度会相应增加,吸水率随之减小,拉伸强度随之增加.此外,8%铸膜液所制得的非对称膜同时拥有微孔、介孔和大孔,在伤口敷料领域有潜在的应用前景. |
Wound dressings with asymmetric porous membranes play an important role in the treatment of skin injuries. At present, most asymmetric membranes are prepared by dry/wet phase transformation, but most solvents and non-solvents used in this method are cytotoxic, and the prolonged drying process can lead to the collapse of the porous structure. In view of the above problems, an asymmetric membrane was prepared by supercritical CO2 phase conversion using polyvinyl alcohol and chitosan as raw materials. The effects of different mass fractions of casting liquid (6%, 7%, 8%, 9%) on the morphology, structure and properties of the membrane were investigated. The results showed that all four membranes have obvious asymmetric structure, and the mechanical properties of the asymmetric films (tensile strength 6.07~14.3 MPa, tensile modulus 3.17~9.82 MPa) and water absorption (177.8%~254.0%) were within the desired range of ideal wound dressings. With the increase of the mass fraction of casting liquid, the density of the surface layer and the thickness of the dense layer increased correspondingly, the water absorption rate decreased, and the tensile strength increased. In addition, the asymmetric membrane produced by 8% casting liquid had micropores, mesoporous and macropores at the same time, which had a potential application prospect in the field of wound dressing. |
基金项目: |
湖北省自然科学基金项目(2022CFB888) |
作者简介: |
翟晴晴(1999-),女,河南焦作人,硕士研究生,研究方向为功能高分子多孔膜 |
参考文献: |
[1]Mousavi S M, Zarei M, Hashemi S A , et al. Asymmetric membranes: A potential scaffold for wound healing applications[J]. Symmetry,2020, 12(7):1100. [2]Azam F, Ahmad F, Ahmad S, et al. Synthesis and characterization of natural fibers reinforced alginate hydrogel fibers loaded with diclofenac sodium for wound dressings[J]. Int J Biol Macromol,2023,241:124623. [3]Li T, Sun M C, Wu S H. State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications[J]. Nanomaterials,2022,12 (5):784. [4]Sun L L , Li L H ,Wang Y Q , et al. A collagen-based bi-layered composite dressing for accelerated wound healing[J]. J Tissue Viability,2022, 31(1):180-189. [5]Carayon I, Szarlej P,Gnatowski P, et al. Polyurethane based hybrid ciprofloxacin-releasing wound dressings designed for skin engineering purpose[J].Adv Medl Sci, 2022, 67 (2) :269-282. [6]Yin J, Xu L. Batch preparation of electrospun polycaprolactone/chitosan/aloe vera blended nanofiber membranes for novel wound dressing[J]. Int J of Biol Macromol,2020,160:352-363. [7]Suarato G, Bertorelli R, Athanassiou A. Borrowing from nature: biopolymers and biocomposites as smart wound care materials[J]. Front Bioeng Biotech, 2018,6:1-11. [8]Moeini A, Pedram P, Makvandi P, et al. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review[J]. Carbohyd Polym, 2020, 233: 115839. [9]Smets G,Rüdelsheim P. Biotechnologically produced chitosan for nanoscale products. A legal analysis[J]. New Biotechnol,2018,42: 42-47. [10]Yu D W, Yu Z J, Zhao W Y, et al. Advances in the application of chitosan as a sustainable bioactive material in food preservation[J]. Crit Rev Food Sci ,2022,62(14):3782-3797. [11]Shariatinia Z. Pharmaceutical applications of chitosan[J].Adv Colloid Interfac Sci, 2019,263:131-194. [12]Gao Y Y, Wu Y L. Recent advances of chitosan-based nanoparticles for biomedical and biotechnological applications[J].Int J of Biol Macromol,2022,203:379-388. [13]Zhao J, Qiu P, Wang Y, et al. Chitosan-based hydrogel wound dressing: from mechanism to applications, a review[J]. Int J of Biol Macromol,2023, 244:125250. [14]Yan T T, Li C P, Ouyang Q Q, et al. Synthesis of gentamicin-grafted-chitosan with improved solubility and antibacterial activity[J]. React Funct Polym,2019,137:38-45. [15]Bakhsheshi-Rad H R, Fauzi I A, Aziz M, et al. Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In vitro and in vivo assessment[J]. Int J Biol Macromol,2020,149: 513-521. [16]Lee S X, Lei Y N, Wang D, et al. The study of zeolitic imidazolate framework (ZIF-8) doped polyvinyl alcohol/starch/methyl cellulose blend film[J].Polymers,2019,11:1986. [17]Huang N Y, Wang C C, Chen C Y. Investigation of the gas permeation properties of a polyether sulfone asymmetric membrane via the phase inversion method[J]. J Appl Polym Sci,2022,139 (32):52762. [18]Aragón J, Costa C, Coelhoso I, et al. Electrospun asymmetric membranes for wound dressing applications[J].Biomaterials Adv, 2019 ,103: 109822. [19]Genevro G M, Gomes N R J, Almeida P L, et al. Glucomannan asymmetric membranes for wound dressing[J]. J Mater Res,2019,34:481-489 . [20]Yang L, Hao D F, Feng G, et al. A hydrogel wound dressing ideally designed for chronic wound care[J]. Matter,2023, 6:1060-1062. [21]Mi F L, Shyu S S, Wu Y B, et al. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing[J]. Biomaterials,2001,22(2): 165-173. [22]Figueira D R, Miguel S P, de Sá K D, et al. Production and characterization of polycaprolactone-hyaluronic acid/chitosan-zein electrospun bilayer nanofibrous membrane for tissue regeneration[J]. Int J Biol Macromol, 2016, 93: 1100-1110. [23]Morgado P I, Aguiar-Ricardo A, Correia I J. Asymmetric chitosan membranes prepared by dry/wet phase separation: a new type of wound dressing for controlled antibacterial release[J]. J Membr Sci, 2003, 212(1/2): 237-254. [24]Chen Y, Yan L, Yuan T, et al. Asymmetric polyurethane membrane with in situ-generated nano-TiO2 as wound dressing[J]. J Appl Polym Sci, 2011, 119(3): 1532-1541. [25]李昕,陈翠仙,李继定.草酸对非对称膜成膜过程中热力学、流变学和凝胶动力学的影响[J].高等学校化学学报,2009,30(1):203-207. [26]Chen J M, Yang H M, Li J S, et al. The development of an artificial skin model and its frictional interaction with wound dressings[J]. J Mech Behav Biomed,2019, 94:308-316. [27]Bouwstra J, Gooris G, Ponec M. The skin barrier: a unique interplay between corneocytes and lipids[J]. J Cosmet Sci, 2003,54(1) :102-1032. [28]Miguel S, Ribeiro M, Coutinho P, et al. Electrospun polycaprolactone/aloe vera_chitosan nanofibrous asymmetric membranes aimed for wound healing applications[J]. Polymers,2017,9(5):183. [29]Miguel S P, Ribeiro M P, Brancal H, et al. Thermoresponsive chitosan-agarose hydrogel for skin regeneration[J]. Carbohyd Polym, 2014, 111: 366-373. [30]Sudheesh K P T, Lakshmanan V K, Anilkumar T V, et al. Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: In vitro and in vivo evaluation[J].ACS Appl Mater Interf,2012,4 (5):2618-2629. [31]Martínez-Gómez F, Guerrero J , Matsuhiro B,et al. In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels[J].Carbohyd Polym,2017,155:182-191. [32]Lan Z, Kar R, Chwatko M, et al. High porosity PEG-based hydrogel foams with self-tuning moisture balance as chronic wound dressings[J]. J Biomed Mater Res,2023,111(4): 465-477. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号