MOF玻璃膜研究进展
作者:宋昊, 张雅婷, 金花, 李砚硕
单位: 宁波大学
关键词: 金属-有机骨架; 非晶态; 吸附; MOF玻璃膜; 气体分离
DOI号: 10.16159/j.cnki.issn1007-8924.2024.06.016
分类号: TQ028
出版年,卷(期):页码: 2024,44(6):132-144

摘要:
金属-有机框架(MOF)材料,作为一类新兴的高性能分子筛膜材料,具有规整而均匀的亚纳米级孔道,可实现分子水平的混合物分离.受限于MOF的多晶性质,MOF膜容易产生晶间缺陷,从而降低分离选择性和合成重复性,不利于放大制备和工业应用.MOF玻璃材料由可形成液态的MOF材料熔融淬火形成,继承了前体MOF的化学连接性和组成,同时保留了MOF材料的永久孔隙率,可以实现对不同气体的选择性吸附.MOF玻璃材料的非晶态特性、易加工性和独特微孔结构使其成为制备无晶间缺陷、具有分子筛分性能的优异膜材料.本文总结了MOF材料的熔融机理,分析了不同种类的MOF玻璃材料,概述了其结构和性能,并且综述了近年来MOF玻璃膜的设计开发及其在气体分离应用方面的研究进展.
 
Metal-organic framework (MOF) materials, as an emerging class of high-performance molecular sieve membrane materials, have regular and uniform sub-nanometer pores, which enable the separation of mixtures at the molecular level. Due to the polycrystalline nature of MOF, MOF membranes are prone to inter-crystalline defects, which reduces the separation selectivity and synthesis reproducibility, and is not conducive to scale-up production and industrial application. MOF glass materials, formed by the melt quenching of liquid-formable MOF materials, inherit the chemical connectivity and composition of the precursor MOF while retaining the permanent porosity of the MOF materials, which enables the selective  adsorption of different gases. The amorphous properties, easy processability and unique microporous structure of MOF glass materials make them excellent membrane materials for the preparation of defect-free molecular sieving membranes. This paper summarizes the melting mechanism of MOF materials, examines various types of MOF glass materials with different structures and properties. Further, this article reviews recent research progress in the design and development of MOF glass membranes for gas separation. 
 

基金项目:
国家自然科学基金项目(22178182, 22178183);宁波市科技创新2025重大专项(2022Z154);浙江省省属高校基本科研业务费(SJLZ2023004)

作者简介:
宋昊(1999-),男,山东烟台人,硕士研究生,研究方向为气体分离膜.

参考文献:
[1]Zhang W, Xiong R G. Ferroelectric metal-organic frameworks[J]. Chem Rev, 2012, 112(2):1163-1195. 
[2]Horcajada P, Gref R, Baati T, et al. Metal-organic frameworks in biomedicine[J]. Chem Rev, 2012, 112(2):1232-1268.
[3]Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chem Rev, 2012, 112(2):869-932.
[4]Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5):1477-1504.
[5]Horike S, Nagarkar S S, Ogawa T, et al. A new dimension for coordination polymers and metal-organic frameworks: Towards functional glasses and liquids[J]. Angew Chem Int Ed, 2020, 59(17):6652-6664.
[6]Formalik F, Mazur B, Fischer M, et al. Phonons and adsorption-induced deformations in ZIFs: Is it really a gate opening?[J]. J Phys Chem C, 2021, 125(14):7999-8005.
[7]Jiang G, Qu C, Xu F, et al. Glassy metal-organic-framework-based quasi-solid-state electrolyte for high-performance lithium-metal batteries[J]. Adv Funct Mater, 2021, 31(43):2104300.
[8]Umeyama D, Horike S, Inukai M, et al. Reversible solid-to-liquid phase transition of coordination polymer crystals[J]. J Am Chem Soc, 2015, 137(2):864-870.
[9]Bennett T D, Horike S. Liquid, glass and amorphous solid states of coordination polymers and metal-organic frameworks[J]. Nat Rev Mater, 2018, 3(11):431-440.
[10]Bennett T D, Tan J C, Yue Y, et al. Hybrid glasses from strong and fragile metal-organic framework liquids[J]. Nat Commun, 2015, 6:8079.
[11]Zhou B, Qi Z, Yan D. Highly efficient and direct ultralong all-phosphorescence from metal-organic framework photonic glasses[J]. Angew Chem Int Ed, 2022, 61(39):e202208735.
[12]Ali M A, Winters W M W, Mohamed M A, et al. Fabrication of super-sized metal inorganic-organic hybrid glass with supramolecular network via crystallization-suppressing approach [J]. Angew Chem Int Ed, 2023, 62(14):e202218094.
[13]Gaillac R, Pullumbi P, Beyer K A, et al. Liquid metal-organic frameworks[J]. Nat Mater, 2017, 16(11):1149-1154.
[14]Widmer R N, Lampronti G I, Anzellini S, et al. Pressure promoted low-temperature melting of metal-organic frameworks[J]. Nat Mater, 2019, 18(4):370-376.
[15]Tuffnell J M, Ashling C W, Hou J, et al. Novel metal-organic framework materials: blends, liquids, glasses and crystal-glass composites[J]. Chem Commun, 2019, 55(60):8705-8715.
[16]Zhou C, Longley L, Krajnc A, et al. Metal-organic framework glasses with permanent accessible porosity[J]. Nat Commun, 2018, 9(1):5042.
[17]Bennett T D, Yue Y, Li P, et al. Melt-quenched glasses of metal-organic frameworks[J]. J Am Chem Soc, 2016, 138(10):3484-3492.
[18]Xia H, Jin H, Zhang Y, et al. A long-lasting TIF-4 MOF glass membrane for selective CO2 separation[J]. J Membr Sci, 2022, 655:120611.
[19] Hou J, Ríos Gómez M L, Krajnc A, et al. Halogenated metal-organic framework glasses and liquids[J]. J Am Chem Soc, 2020, 142(8):3880-3890.
[20]Qiao A, Bennett T D, Tao H, et al. A metal-organic framework with ultrahigh glass-forming ability[J]. Sci Adv, 4(3):eaao6827.
[21]Li J, Wang J, Li Q, et al. Coordination polymer glasses with lava and healing ability for high-performance gas sieving[J]. Angew Chem Int Ed, 2021, 60(39):21304-21309.
[22]Longley L, Collins S M, Zhou C, et al. Liquid phase blending of metal-organic frameworks[J]. Nat Commun, 2018, 9(1): 2135.
[23]Longley L, Collins S M, Li S, et al. Flux melting of metal-organic frameworks[J]. Chem Sci, 2019, 10(12):3592-3601.
[24]付艳艳, 严秀平. 金属-有机骨架复合材料[J]. 化学进展, 2013, 25(Z1):221-232.
[25]Zhu Q L, Xu Q. Metal-organic framework composites[J]. Chem Soc Rev, 2014, 43(16):5468-5512.
[26]Hou J, Ashling C W, Collins S M, et al. Metal-organic framework crystal-glass composites[J]. Nat Commun 2019, 10(1):2580.
[27]Li S, Yu S, Collins S M, et al. A new route to porous metal-organic framework crystal-glass composites[J]. Chem Sci, 2020, 11(36):9910-9918.
[28]Frentzel-Beyme L, Klo M, Kolodzeiski P, et al. Meltable mixed-linker zeolitic imidazolate frameworks and their microporous glasses: From melting point engineering to selective hydrocarbon sorption[J]. J Am Chem Soc, 2019, 141(31):12362-12371.
[29]Wang Y, Jin H, Ma Q, et al. A MOF glass membrane for gas separation[J]. Angew Chem Int Ed, 2020, 59(11):4365-4369.
[30]Ma C, Li N, Li D, et al. A self-supported agZIF-UC-4 glass membrane for gas separation[J]. J Membr Sci, 2023, 683:121873.
[31]Yang Z, Belmabkhout Y, Mchugh L N, et al. ZIF-62 glass foam self-supported membranes to address CH4/N2 separations[J]. Nat Mater, 2023, 22(7): 888-894.
[32]Zhang Y, Wang Y, Xia H, et al. A hybrid ZIF-8/ZIF-62 glass membrane for gas separation[J]. Chem Commun, 2022, 58(68):9548-9551.
[33]Ao D, Yang Z, Qiao Z, et al. Metal-organic framework crystal-glass composite membranes with preferential permeation of ethane[J]. Angew Chem Int Ed, 2023, 62(28):e202304535.
[34]Li D, Yang Z, Yang L, et al. Self-supported flux melted glass membranes fabricated by melt quenching for gas separation[J]. J Membr Sci, 2024, 695:122492.
[35]Lin R, Hou J, Li M, et al. Interfacial engineering of a polymer-MOF composite by in situ vitrification[J]. Chem Commun, 2020, 56(25):3609-3612.
[36]Mubashir M, Dumée L F, Fong Y Y, et al. Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation[J]. J Hazard, 2021, 415:125639.
[37]Feng Y, Yan W, Kang Z, et al. Thermal treatment optimization of porous MOF glass and polymer for improving gas permeability and selectivity of mixed matrix membranes[J]. Chem Eng J, 2023, 465:142873.
[38]Ao D, Yang Z, Chen A, et al. Effective C4 separation by zeolite metal-organic framework composite membranes[J]. Angew Chem Int Ed, 2024, 63(21):e202401118.
[39]Cliffe M J, Wan W, Zou X, et al. Correlated defect nanoregions in a metal-organic framework[J]. Nat Commun, 2014, 5:4176.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号