油水高效分离用碳化硅膜的研究进展 |
作者:古其林, 李军佑, 仲兆祥, 邢卫红 |
单位: 南京工业大学 化工学院 国家特种分离膜工程技术研究中心 材料化学工程国家重点实验室 |
关键词: 碳化硅膜; 油水分离; 微结构调控; 表面润湿性 |
DOI号: 10.16159/j.cnki.issn1007-8924.2024.06.017 |
分类号: TQ 028.8 |
出版年,卷(期):页码: 2024,44(6):145-157 |
摘要: |
碳化硅膜具有优异的耐腐蚀性、高温稳定性、表面亲水性和独特的电负性,在含油废水处理方面极具应用前景.碳化硅膜的表面微结构不仅直接决定着油水分离精度,也影响着表面润湿性和油水分离效率.碳化硅膜的微结构调控与优化是提高油水分离效率的重要途径.本文回顾和梳理了碳化硅膜在油水乳液分离方面的研究进展和制备技术的发展历程;重点综述了碳化硅膜微结构和表面性质调控的方法和策略及其对油水分离性能的影响;面向油水分离的应用体系,对碳化硅膜的低成本制备和微结构调控技术进行了展望,为油水分离的降本增效和膜材料的绿色制造提供重要参考. |
Owing to the excellent chemical corrosion resistance, high temperature stability, surface hydrophilicity and unique surface charge, silicon carbide (SiC) membranes show great potential in oily wastewater treatment. The microstructure of SiC membranes not only determine the separation efficiency but also closely correlate to the surface wettability. Therefore, manipulating the microstructure of SiC membranes by regulating the preparation processing parameters would be an effective pathway to further improve the separation efficiency in oily wastewater. In this review, the recent progress on SiC membranes for oil-in-water (O/W) emulsion separation is briefed. Then, the methods and pathways to tune the microstructure and surface characteristics of SiC membranes are summarized, accompanying with the potential impact on the separation efficiency of O/W emulsion. Finally, the perspectives of SiC membranes for O/W emulsion separation, especially the pathways to the microstructure regulation and low-coat fabrication are provided, aiming at the cost-efficient, high-efficiency and green fabrication. |
基金项目: |
国家重点研发计划项目(2022YFB3805002); 国家自然科学基金项目(22308150); 江苏省青年基金项目(BK20220345) |
作者简介: |
古其林(1988-),男,四川泸州人,教授,博士研究生,主要从事陶瓷膜材料的制备和应用研究. |
参考文献: |
[1]Dong Y, Liu Y, Hu C, et al. Chronic oiling in global oceans[J]. Science, 2022, 376(6599): 1300-1304. [2]Tanudjaja H J, Hejase C A, Tarabara V V, et al. Membrane-based separation for oily wastewater: A practical perspective[J]. Water Res, 2019, 156: 347-365. [3]Abadi S R H, Sebzari M R, Hemati M, et al. Ceramic membrane performance in microfiltration of oily wastewater[J]. Desalination, 2011, 265(1/2/3): 222-228. [4]Chen M, Heijman S G J, Rietveld L C. State-of-the-art ceramic membranes for oily wastewater treatment: Modification and application[J]. Membranes, 2021, 11(11): 888. [5]Heydari Beni A. Screening of microfiltration and ultrafiltration ceramic membranes for produced water treatment and testing of different cleaning methods[D]. Faculty of Graduate Studies and Research, University of Regina, 2014. [6]Bakshi A K, Ghimire R, Sheridan E, et al. Treatment of produced water using silicon carbide membrane filters[C]//Advances in Bioceramics and Porous Ceramics VIII: A Collection of Papers Presented at the 39th International Conference on Advanced Ceramics and Composites. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015: 89-106. [7]Arndt F, Ehlen F, Schütz S, et al. Influence of operating parameters and membrane materials on fouling of ceramic hollow fibre membranes[J]. Sep Purif Technol, 2016, 171: 289-296. [8]Zsirai T, Al-Jaml A K, Qiblawey H, et al. Ceramic membrane filtration of produced water: Impact of membrane module[J]. Sep Purif Technol, 2016, 165: 214-221. [9]Wit P D, Kappert E J, Lohaus T, et al. Highly permeable and mechanically robust silicon carbide hollow fiber membranes[J]. J Membr Sci, 2015, 475: 480-487.. [10]Fraga M C, Sanches S, Pereira V J, et al. Morphological, chemical surface and filtration characterization of a new silicon carbide membrane[J]. J Eur Ceram Soc, 2017, 37(3): 899-905. [11]Das D, Baitalik S, Haldar B, et al. Preparation and characterization of macroporous SiC ceramic membrane for treatment of waste water[J]. J Porous Mat, 2018, 25: 1183-1193. [12]Shi L, Lei Y, Huang J, et al. Ultrafiltration of oil-in-water emulsions using ceramic membrane: roles played by stabilized surfactants[J]. Colloid Surface A, 2019, 583: 123948. [13]Jiang Q, Zhou J, Miao Y, et al. Lower-temperature preparation of SiC ceramic membrane using zeolite residue as sintering aid for oil-in-water separation[J]. J Membr Sci, 2020, 610: 118238. [14]Jiang Q, Xie Y, Ji L, et al. Low-temperature sintering of a porous SiC ceramic filter using water glass and zirconia as sintering aids[J]. Ceram Int, 2021, 47(18): 26125-26133. [15]Li S, Li Y, Wei C, et al. One step co-sintering of silicon carbide ceramic membrane with the aid of boron carbide[J]. J Eur Ceram Soc, 2021, 41(2): 1181-1188. [16]Jiang Q, Wang Y, Xie Y, et al. Silicon carbide microfiltration membranes for oil-water separation: Pore structure-dependent wettability matters[J]. Water Res, 2022, 216: 118270. [17]Xie Y, Gu Q, Jiang Q, et al. Effects of the original state of sodium-based additives on microstructure, surface characteristics and filtration performance of SiC membranes[J]. Chin J Chem Eng, 2023, 63: 1-11. [18]Jiang Q, Lin B, Zhong Z, et al. Ultra-low temperature co-sintering of water glass (WG)-bonded silicon carbide ceramic membranes for oil-water separation[J]. J Membr Sci, 2024, 692: 122311. [19]Fraga M C, Sanches S, Crespo J G, et al. Assessment of a new silicon carbide tubular honeycomb membrane for treatment of olive mill wastewaters[J]. Membranes, 2017, 7(1): 12. [20]Xu M, Xu C, Rakesh K P, et al. Hydrophilic SiC hollow fiber membranes for low fouling separation of oil-in-water emulsions with high flux[J]. RSC Adv, 2020, 10(8): 4832-4839. [21]Oliveira S S L, Apolnio T G, Ferreira R S B, et al. Silicon carbide hollow fiber membranes developed for the textile industry wastewater treatment[J]. Cermica, 2021, 67: 188-195. [22]Zou D, Fan Y. State-of-the-art developments in fabricating ceramic membranes with low energy consumption[J]. Ceram Int, 2021, 47(11): 14966-14987. [23]Suwanmethanond V, Goo E, Liu P K T, et al. Porous silicon carbide sintered substrates for high-temperature membranes[J]. Ind Eng Chem Res, 2000, 39(9): 3264-3271. [24]Zhou Y, Fukushima M, Miyazaki H, et al. Preparation and characterization of tubular porous silicon carbide membrane supports[J]. J Membr Sci, 2011, 369(1/2): 112-118. [25]Zhou J, Gu Q, Liu F, et al. Low-temperature sintering of silicon carbide membrane supports from disks to single-and 19-channel tubes[J]. J Eur Ceram Soc, 2022, 42(6): 2597-2608. [26]Gu Q, Kotobuki M, Kirk C H, et al. Overcoming the trade-off between water permeation and mechanical strength of ceramic membrane supports by interfacial engineering[J]. Acs Appl Mater Inter, 2021, 13(24): 29199-29211. [27]Zou D, Chen X, Drioli E, et al. Facile mixing process to fabricate fly-ash-enhanced alumina-based membrane supports for industrial microfiltration applications[J]. Ind Eng Chem Res, 2019, 58(20): 8712-8723. [28]Zou D, Qiu M, Chen X, et al. One step co-sintering process for low-cost fly ash based ceramic microfiltration membrane in oil-in-water emulsion treatment[J]. Sep Purif Technol, 2019, 210: 511-520. [29]Nagasawa H, Omura T, Asai T, et al. Filtration of surfactant-stabilized oil-in-water emulsions with porous ceramic membranes: Effects of membrane pore size and surface charge on fouling behavior[J]. J Membr Sci, 2020, 610: 118210. [30]Wang Y, Liu Y, Chen Z, et al. Recent progress in the pore size control of silicon carbide ceramic membranes[J]. Ceram Int, 2022, 48(7): 8960-8971. [31]Li S, Wei C, Zhou L, et al. Evaporation-condensation derived silicon carbide membrane from silicon carbide particles with different sizes[J]. J Eur Ceram Soc, 2019, 39(5): 1781-1787. [32]Wang S, Xia H, Mi J, et al. Fabrication of high-performance recrystallized silicon carbide ceramic membrane based on particle packing optimization[J]. J Membr Sci, 2024, 705: 122922. [33]Yun S I, Nahm S, Park S W. Effects of the size distribution of SiC powders on the microstructures and properties of liquid phase bonded porous SiC with neck bonding phases of Y4Al2O9, Y3A5O12, Y2Si2O7, and Al2O3[J]. J Ceram Soc Jpn, 2021, 129(11): 660-668. [34]Eray E, Boffa V, Jrgensen M K, et al. Enhanced fabrication of silicon carbide membranes for wastewater treatment: From laboratory to industrial scale[J]. J Membr Sci, 2020, 606: 118080. [35]Abbas Bukhari S Z, Ha J H, Lee J, et al. Expansionless oxidation-bonded SiC microfiltration membrane by controlling the oxidation of SiC particle mixtures[J]. J Asian Ceram Soc, 2021, 9(3): 1067-1082. [36]Liang Z, Zhang H, Li Y, et al. A reverse particle grading strategy for design and fabrication of porous SiC ceramic supports with improved strength[J]. J Adv Ceram, 2024, 13(7):1011-1022. [37]Li S, Wei C, Wang P, et al. Zirconia ultrafiltration membranes on silicon carbide substrate: Microstructure and water flux[J]. J Eur Ceram Soc, 2020, 40(12): 4290-4298. [38]Ha J H, Lee S, Bukhari S Z A, et al. Effects of preparation conditions on the membrane properties of alumina-coated silicon carbide supports[J]. J Ceram Soc Jpn, 2018, 126(10): 860-869. [39]Li Y, Wu H, Liu X, et al. Microstructures and properties of solid-state-sintered silicon carbide membrane supports[J]. Ceram Int, 2019, 45(16): 19888-19894. [40]Li Y, Wu H, Liu M, et al. Preparation and characterization of pure SiC filters with an asymmetric structure[J]. Ceram Int, 2021, 47(12): 17161-17166. [41]Deng W, Yu X, Sahimi M, et al. Highly permeable porous silicon carbide support tubes for the preparation of nanoporous inorganic membranes[J]. J Membr Sci, 2014, 451: 192-204. [42]Guo W, Xiao H, Yao X, et al. Tuning pore structure of corrosion resistant solid-state-sintered SiC porous ceramics by particle size distribution and phase transformation[J]. Mater Des, 2016, 100: 1-7. [43]Eom J H, Kim Y W, Raju S. Processing and properties of macroporous silicon carbide ceramics: A review[J]. J Asian Ceram Soc, 2013, 1(3): 220-242. [44]Omar N M A, Othman M H D, Tai Z S, et al. Recent progress and technical improvement strategies for mitigating ceramic membrane bottlenecks in water purification processes: A review[J]. Int J Appl Ceram Tech, 2023, 20(6): 3327-3356. [45]魏逸彬,朱涛涛,姬文兰,等.固体废弃物助烧的多孔SiC陶瓷膜支撑体研究进展[J].硅酸盐学报, 2023, 51(12): 3215-3226. [46]Yang Y, Han F, Xu W, et al. Low-temperature sintering of porous silicon carbide ceramic support with SDBS as sintering aid[J]. Ceram Int, 2017, 43(3): 3377-3383. [47]周剑,江倩,杨怡,等.烧结助剂对低温制备碳化硅多孔陶瓷性能的影响[J]. 化工学报, 2021, 72(4): 2293-2299. [48]Fukushima M, Zhou Y, Yoshizawa Y. Fabrication and microstructural characterization of porous SiC membrane supports with Al2O3-Y2O3 additives[J]. J Membr Sci, 2009, 339(1/2): 78-84. [49]Ng T C A, Lyu Z, Wang C, et al. Effect of surface-patterned topographies of ceramic membranes on the filtration of activated sludge and their interaction with different particle sizes[J]. J Membr Sci, 2022, 645: 120125. [50]King S W, Nemanich R J, Davisa R F. Wet chemical processing of (0001) Si 6H-SiC hydrophobic and hydrophilic surfaces[J]. J Electrochem Soc, 1999, 146(5): 1910. [51]Wenzel R N. Surface roughness and contact angle[J]. J Phys Chem C, 1949, 53(9): 1466-1467. [52]Romero A S, Innocentini M D M, Oliveira J V, et al. Unveiling the potential of silicon carbide as a support material and membranes for oily wastewater remediation[J]. Sep Purif Technol, 2024, 354: 129044. [53]Drelich J, Chibowski E, Meng D D, et al. Hydrophilic and superhydrophilic surfaces and materials[J]. Soft Matter, 2011, 7(21): 9804-9828. [54]Jin J, Su J, Xiang C, et al. Efficient demulsification of ultralow-concentration crude oil-in-water emulsion by three-dimensional superhydrophilic channels[J]. Sci China Mater, 2022, 65(1): 213-219. [55]Eray E, Candelario V M, Boffa V. Ceramic processing of silicon carbide membranes with the aid of aluminum nitrate nonahydrate: Preparation, characterization, and performance[J]. Membranes, 2021, 11(9): 714. [56]Poli A, Sfeir R, Santos A F, et al. Backwashable dynamic membrane made of anchored CNT on SiC microfiltration membranes applied to oil in water emulsion filtration[J]. Sep Purif Technol, 2021, 278: 119566. [57]Fonto N C, Ferrari L N, Sapatieri J C, et al. Influence of the pyrolysis temperature and TiO2-incorporation on the properties of SiOC/SiC composites for efficient wastewater treatment applications[J]. Membranes, 2022, 12(2): 175. [58]Bessa L P, de Paulo Ferreira E, Cardoso V L, et al. Air-sintered silicon (Si)-bonded silicon carbide (SiC) hollow fiber membranes for oil/water separation[J]. J Eur Ceram Soc, 2022, 42(2): 402-411. [59]王旭东,周扬,袁怡.烧结温度对SiC多孔陶瓷性能的影响[J]. 功能材料, 2022, 53(1): 1072-1076. [60]Das D, Kayal N, Innocentini M D M. Permeability behavior and wastewater filtration performance of mullite bonded porous SiC ceramic membrane prepared using coal fly ash as sintering additive[J]. T Indian Ceram Soc, 2021, 80(3): 186-192. [61]陈俐.多孔SiC陶瓷膜的制备与废水处理性能的表征[J]. 功能材料, 2020, 51(12): 12204-12208. [62]Das D, Nijhuma K, Gabriel A M, et al. Recycling of coal fly ash for fabrication of elongated mullite rod bonded porous SiC ceramic membrane and its application in filtration[J]. J Eur Ceram Soc, 2020, 40(5): 2163-2172. [63]Das D, Kayal N, Marsola G A, et al. Permeability behavior of silicon carbide-based membrane and performance study for oily wastewater treatment[J]. Int J Appl Ceram Tec, 2020, 17(3): 893-906. [64]Zoubeik M, Henni A. Ultrafiltration of oil-in-water emulsion using a 0.04-μm silicon carbide membrane: Taguchi experimental design approach[J]. Desalin Water Treat, 2017, 62: 108-119. [65]Dunsmuir I, Guthrie G, Cottrell T, et al. The deployment of ceramic membrane technology to treat stable oil in emulsions in produced water offshore[C]//SPE Offshore Europe Conference and Exhibition. SPE, 2017: D021S006R002. [66]Kuhn M, Bakshi A, Sheridan E, et al. Silicon carbide membranes for water filtration applications[J]. Ceram Environ Systems, 2016, 257: 121. [67]叶世威,王贝辉,洪昱斌,等. 碳化硅陶瓷膜在油水分离中的应用研究[J]. 功能材料, 2011, 42(2): 248-251. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号