高温低湿用全氟磺酸质子交换膜改性研究进展
作者:魏刚, 季辉, 李永哲, 王凯, 刘丰宇, 张波, 王丽
单位: 山东东岳未来氢能材料股份有限公司
关键词: 高温质子交换膜; Nafion膜; 改性掺杂
DOI号: 10.16159/j.cnki.issn1007-8924.2024.06.020
分类号: TQ028; TM911.4
出版年,卷(期):页码: 2024,44(6):178-185

摘要:
高温质子交换膜燃料电池(HT-PEMFC)因电极反应快、转化率高、水热管理简单、耐受性好等优点被广泛关注.高温质子交换膜作为质子交换膜燃料电池的核心部件,对整个高温质子交换膜燃料电池系统的运行起着至关重要的作用.目前最广泛商业化应用的质子交换膜材料-Nafion膜对高温和低相对湿度的运行环境表现出质子导电率降低、机械性能变差等问题.本文综述了近年来关于提高Nafion膜质子传导率的研究进展,讨论了Nafion膜在高温和低相对湿度的运行机理,从分子设计的角度对Nafion的结构改性方法研究进行了总结和分析,重点探讨了无机、有机复合材料掺杂对Nafion膜质子传导性能的提升,展望了高温质子交换膜的未来发展方向,为后续的高温质子交换膜的研究工作提供指导.
 
High-temperature proton exchange membrane fuel cell (HT-PEMFC) has been widely noticed due to the advantages of fast electrode reaction, high conversion rate, simple hydrothermal management, and good tolerance, etc. High-temperature proton exchange membrane, as the core component of the proton exchange membrane fuel cell, plays a crucial role in the operation of the whole HT-PEMFC system. Nafion membrane, which is currently the most widely commercialized proton exchange membrane material, exhibits reduced proton conductivity and deteriorated mechanical properties for high temperature and low relative humidity operating environments.In this paper, the research progress on improving the proton conductivity of Nafion membranes in recent years is reviewed, the operation mechanism of Nafion membrane at high temperature and low relative humidity is discussed, the research of structural modification methods of Nafion is summarized and analyzed from the perspective of molecular design, and the research focuses on the inorganic and organic composite materials doping on the Nafion membrane proton conductivity is discussed, and the improvement of high temperature PEM is anticipated. It is also expected that the future development of high-temperature proton exchange membranes will be guided by the subsequent research on high-temperature proton exchange membranes. 
 

基金项目:
国家重点研发计划项目(2021YFB4001102)

作者简介:
魏刚(1982- ),男,山东莱芜人,高级工程师,硕士,研究方向为燃料电池质子膜测试方法研究

参考文献:
[1]nci M. Future vision of hydrogen fuel cells: A statistical review and research on applications, socio-economic impacts and forecasting prospects[J]. Sustain Energy Techn, 2022, 53: 102739.
[2]黄梓俊,赵腾腾,任艳蓉,等.燃料电池用跨温区质子交换膜材料研究进展[J].化学研究,2023,34(4):283-296.
[3]Asghar M R, Xu Q. A review of advancements in commercial and non-commercial Nafion-based proton exchange membranes for direct methanol fuel cells[J]. J Polym Res, 2024, 31(5): 125.
[4]谢旭秋,王丽,赵淑会,等.含磷酸结构全氟磺酸质子交换膜研究进展[J].膜科学与技术,2023,43(6):202-211.
[5]卢善富,徐鑫,张劲,等.燃料电池用磷酸掺杂高温质子交换膜研究进展[J].中国科学:化学,2017,47(5):565-572.
[6]Li T, Chai S, Liu B, et al. All-carbon backbone aromatic polymers for proton exchange membranes[J]. J Polym Sci, 2023, 61(22): 2796-2814.
[7]Peckham T J, Holdcroft S. Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes[J]. Adv Mater, 2010, 22(42): 4667-4690.
[8]Gonalves R, Tozzi K A, Saccardo M C, et al. Nafion-based ionomeric polymer/metal composites operating in the air: Theoretical and electrochemical analysis[J]. J Solid State Electr, 2020, 24(8): 1845-1856.
[9]杨轶.基于离子液体及聚乙烯醇的聚集体微观结构调控质子/阴离子传导膜性能研究[D].济南:山东大学,2016.
[10]Cheng X, You J, Shen S, et al. An ingenious design of nanoporous nafion film for enhancing the local oxygen transport in cathode catalyst layers of PEMFCs[J]. Chem Eng J, 2022, 439: 135387.
[11]王蔼廉,计文希,李晶,等.聚苯并咪唑/磷酸掺杂高温质子交换膜的研究进展[J].高分子通报,2024,37(2):137-149.
[12]Safronova E Y, Lysova A A, Voropaeva D Y, et al. Approaches to the modification of perfluorosulfonic acid membranes[J]. Membranes, 2023, 13(8): 721.
[13]Guan P, Lei J, Liu X, et al. Origins of water state and ionic cluster morphology for high proton conductivity of short side-chain perfluorinated sulfonic acid membranes[J]. Chem Mater, 2022, 34(17): 7845-7857.
[14]Guan P, Zou Y, Zhang M, et al. High-temperature low-humidity proton exchange membrane with “stream-reservoir” ionic channels for high-power-density fuel cells[J]. Sci Adv, 2023, 9(17): eadh1386.
[15]Choi S Y, Ikhsan M M, Jin K S, et al.Nanostructure-property relationship of two perfluorinated sulfonic acid (PFSA) membranes[J]. Int J Energ Res, 2022, 46(8): 11265-11277.
[16]Sunda A P, Venkatnathan A. Molecular dynamics simulations of side chain pendants of perfluorosulfonic acid polymer electrolyte membranes[J]. J Mater Chem A, 2013, 1(3): 557-569.
[17]Al Munsur A Z, Goo B H, Kim Y, et al. Nafion-based proton-exchange membranes built on cross-linked semi-interpenetrating polymer networks between poly (acrylic acid) and poly (vinyl alcohol)[J].ACS Appl Mater & Interfaces,2021,13(24): 28188-28200.
[18]Tan H, Zhao S, Ali S E, et al. Perfluorosulfonic acid proton exchange membrane with double proton site side chain for high-performance fuel cells at low humidity[J]. J Mater Sci Technol, 2023, 166: 155-163.
[19]Song J, Zhao W, Zhou L, et al. Rational materials and structure design for improving the performance and durability of high temperature proton exchange membranes (HT-PEMs)[J]. Adv Sci, 2023, 10(30): 2303969.
[20]徐国效.Nafion膜高温低湿改性及燃料电池应用研究[D].武汉:中国地质大学,2021.
[21]Segale M E, Mokrani T, Sigwadi R A. Synthesis and characterization of enhanced proton-conducting Nafion 117-Silica composite membranes for fuel cell applications[J]. J Nano Res, 2024, 82: 95-116.
[22]Liu S, Yu J, Hao Y, et al. Impact of SiO2 modification on the performance of nafion composite membrane[J]. Int J Polym Sci, 2024, 2024(1): 6309923.
[23]Thmaini N, Charradi K, Ahmed Z, et al. Nafion/SiO2@ TiO2-palygorskite membranes with improved proton conductivity[J]. J Appl Polym Sci, 2022, 139(21): 52208.
[24]徐国效,吴君丽,李静,等.Nafion膜高温改性研究进展[J].膜科学与技术,2023,43(6):180-190.
[25]Ohno R, Shudo K, Tano T, et al. Development of polymer composite membranes with hydrophilic TiO2 nanoparticles and perfluorosulfonic acid-based electrolyte for polymer electrolyte fuel cells operating over a wide temperature range[J]. ACS Appl Energy Mater, 2023, 6(19): 10098-10104.
[26]Choi D W. Electrochemical analysis of polymer membrane with inorganic nanoparticles for high-temperature PEM fuel cells[J]. Membranes, 2022, 12(7): 680.
[27]Xu G, Wei Z, Li S, et al. In-situ sulfonation of targeted silica-filled Nafion for high-temperature PEM fuel cell application[J]. Inter J Hydrogen Energ, 2019, 44(56): 29711-29716.
[28]Hu Y, Li J, Wang S. Examination of the performance of degraded Nafion membrane with graphene oxide[J]. Int J Hydrogen Energ, 2023, 48(81): 31734-31744.
[29]Wang T, Lee J, Wang X, et al. Surface-engineered Nafion/CNTs nanocomposite membrane with improved voltage efficiency for vanadium redox flow battery[J]. J Appl Polym Sci, 2022, 139(7): 51628.
[30]Guan Z, Wang S, Deng Z, et al. A novel proton exchange membrane with long-range ordered proton transport pathways through modulation of interfacial interactions via amino-functionalized polyhedral oligomeric silsesquioxane-grafted graphene oxide[J]. Eur Polym J, 2023, 200: 112529.
[31]Song S, He H, Chai S, et al. Advanced Nafion/nanofiller composite proton exchange membranes for fuel cell applications[J]. Polymer, 2024, 307: 127241.
[32]Xu G, Ke A, Xu G, et al. Enabling high-temperature application of Nafion membrane via imitating ionic clusters in proton conduction channels[J]. Int J Hydrogen Energ, 2024, 56: 330-337.
[33]Barik B, Kumar A, Namgung Y, et al. Mixed-ceria reinforced acid functionalized graphene oxide-Nafion electrolyte membrane with enhanced proton conductivity and chemical durability for PEMFCs[J]. Int J Hydrogen Energ, 2023, 48(75): 29313-29326.
[34]Rao Z, Zhu D, Xu Y, et al. Enhanced proton transfer in proton-exchange membranes with interconnected and Zwitterion-functionalized covalent porous material structures[J]. ChemSusChem, 2023, 16(11): e202202279.
[35]Yang J, Xu H, Li J, et al. Oxygen-and proton-transporting open framework ionomer for medium-temperature fuel cells[J]. Science, 2024, 385(6713): 1115-1120.
[36]Pourzare K, Mansourpanah Y, Farhadi S, et al. Improvement of proton conductivity of magnetically aligned phosphotungstic acid-decorated cobalt oxide embedded Nafion membrane[J]. Energy, 2022, 239: 121940.
[37]Xu G, Xue S, Wei Z, et al. Stabilizing phosphotungstic acid in Nafion membrane via targeted silica fixation for high-temperature fuel cell application[J]. Int J Hydrogen Energ, 2021, 46(5): 4301-4308.
[38]Zhai S, Lu Z, Ai Y, et al. High performance nanocomposite proton exchange membranes based on the nanohybrids formed by chemically bonding phosphotungstic acid with covalent organic frameworks[J]. J Power Sources, 2023, 554: 232332.
[39]Tang H, Gao J, Wang Y, et al. Phosphoric-acid retention in high-temperature proton-exchange membranes[J]. Chem - A Eur J, 2022, 28(70): e202202064.
[40]Maiti T K, Singh J, Majhi J, et al. Advances in polybenzimidazole based membranes for fuel cell applications that overcome Nafion membranes constraints[J]. Polymer, 2022, 255: 125151.
[41]Teixeira F C, de Sá A I, Teixeira A P S, et al. Nafion phosphonic acid composite membranes for proton exchange membranes fuel cells[J]. Appl Surf Sci, 2019, 487: 889-897.
[42]Barik B, Yun Y, Kumar A, et al. Highly enhanced proton conductivity of single-step-functionalized graphene oxide/Nafion electrolyte membrane towards improved hydrogen fuel cell performance[J]. Int J Hydrogen Energ, 2023, 48(29): 11029-11044.
[43]Berber M R, Hafez I H. Boosting the proton conductivity, chemical stability, and fuel cell performance of Nafion membrane at high operating temperatures and low humidity levels by incorporating phytic acid[J]. Int J Hydrogen Energ, 2024, 57: 1126-1138.
[44]Huang H, Zeng X, Zhang X, et al. Proton exchange membrane with excellent proton conductivity and superior stability for application at high operating temperatures[J]. Energy & Fuels, 2023, 37(22): 17516-17525.
[45]Yang Q, Li X, Xie C, et al. Expanding the dimensionality of proton conduction enables ultrahigh anhydrous proton conductivity of phosphoric acid-doped covalent-organic frameworks[J]. Nano Res, 2023, 16(8): 10946-10955.
[46]Ling Z, Wang B, Zhou Y, et al. Fabricating rapid proton conduction pathways with sepiolite nanorod-based ionogel/Nafion composites via electrospinning[J]. Polymer, 2024, 306: 127211.
[47]Goh J T E, Abdul Rahim A R, Masdar M S, et al. Enhanced performance of polymer electrolyte membranes via modification with ionic liquids for fuel cell applications[J]. Membranes, 2021, 11(6): 395.
[48]Choi S Y, Cho S, Kim D, et al. Boosting the proton conduction using protonated imidazole for advanced ion conducting membrane[J]. J Membrane Sci, 2021, 620: 118904.
[49]Ryu G Y, Jae H, Kim K J, et al. Hollow heteropoly acid-functionalized ZIF composite membrane for proton exchange membrane fuel cells[J]. ACS Appl Energy Mater, 2023, 6(8): 4283-4296.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号