聚苯胺复合离子膜及液流电池性能研究
作者:李雅倩, 王权, 张可欣, 刘巧鸿, 宋芃, 安全福
单位: 北京工业大学 材料科学与工程学院, 北京 100124
关键词: 铁铬液流电池; 聚苯胺纳米管; 质子交换膜; 质子传导率
DOI号: 10.16159/j.cnki.issn1007-8924.2025.02.001
分类号: TQ028
出版年,卷(期):页码: 2025,45(2):1-11

摘要:
铁-铬氧化还原液流电池(ICRFB)相对成本较低,在大规模储能领域中具有较好的应用前景。其中,质子交换膜作为铁-铬氧化还原液流电池的重要组件,对电池储能效率具有较大影响,因此开发新型高性能质子交换膜材料至关重要。本研究通过在Nafion膜中掺杂聚苯胺纳米管(PANI),成功制备了一系列不同掺杂量的聚苯胺复合离子膜。PANI纳米管的引入提高了膜的保水率和尺寸稳定性,并增强了质子传导性能。实验结果表明,Nafion/PANI-0.5膜在80 ℃下的质子电导率达到223.4×10-2 S/cm。采用该膜的ICRFB单电池在电流密度为100 mA/cm2时,库仑效率(CE)和能量效率(EE)均优于Nafion膜,分别达到97.9%和87.2%。本研究制备的Nafion/PANI-0.5膜在ICRFB中的应用中展现出良好的性能,为提升液流电池储能系统的整体效能提供了新的思路。
 
The iron-chromium redox flow battery (ICRFB) has relatively low costs and shows promising application prospects in large-scale energy storage fields. Among them, the proton exchange membrane, as an important component of iron-chromium redox flow battery, has a significant impact on the battery’s energy storage efficiency. Therefore, it is crucial to develop new high-performance proton exchange membrane materials. In this study, a series of composite proton exchange membranes with varying doping levels were successfully prepared by incorporating polyaniline (PANI) nanotubes into Nafion membranes. The introduction of nanotubes improved the water retention capacity and dimensional stability of the membranes while enhancing their proton conductivity. Experimental results showed that the proton conductivity of the Nafion/PANI-0.5 membrane reached 223.4×10-2 S/cm at 80 ℃. The ICRFB single cell using this membrane achieved a coulombic efficiency (CE) and energy efficiency (EE) superior to those of the Nafion membrane at a current density of 100 mA/cm2, reaching 97.9% and 87.2%, respectively. The Nafion/PANI-0.5 membrane prepared in this study demonstrated great performance in ICRFB applications, providing a promising strategy to enhance the overall efficiency of redox flow battery energy storage systems. 
 

基金项目:
国家重点研发计划项目(2022YFB3805300)

作者简介:
李雅倩(1998-),女,河南郑州人,硕士,主要研究方向为膜分离

参考文献:
[1]Yuan Z, Duan Y, Zhang H, et al. Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries[J]. Energy Environ Sci, 2016, 9(2):441-447.
[2]Jia C, Pan F, Zhu Y, et al. Hig-henergy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane[J]. Sci Adv, 2015, 1(10):e1500886.
[3]Skyllas-Kazacos M, Cao L, Kazacos M, et al. Vanadium electrolyte studies for the vanadium redox battery - A review[J]. ChemSusChem, 2016, 9(13):1521-1543.
[4]Sun C, Zhang H. Review of the development of firstgeneration redox flow batteries: iron-chromium system[J]. ChemSusChem, 2022, 15(1):e202101798.
[5]Li X, Zhang H, Mai Z, et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications[J]. Energy Environ Sci, 2011, 4(4):1147-1160.
[6]Leung P, Li X, Ponce de León C, et al. Progress in redox flow batteries, remaining challenges and their applications in energy storage[J]. RSC Adv, 2012, 2(27):10125-10156.
[7]Liao J, Lu M, Chu Y, et al. Ultra-low vanadium ion diffusion amphoteric ion-exchange membranes for all-vanadium redox flow batteries[J]. Power Sources, 2015, 282:241-247.
[8]Noh C, Chung Y, Kwon Y. Optimization of iron and cobalt based organometallic redox couples for long-term stable operation of aqueous organometallic redox flow batteries[J]. Power Sources, 2021, 495:229799.
[9]Gong K, Ma X, Conforti K, et al. A zinc-iron redoxflow battery under $100 per kW·h of system capital cost[J]. Energy Environ Sci, 2015, 8(10):2941-2945.
[10]Pasadakis-Kavounis A, Arslan F, Radmer Almind M, et al. Tuning polybenzimidazole-derived crosslinked interpenetrating network membranes for vanadium redox flow batteries[J]. Supercaps, 2023, 6:e202300176.
[11]Yang P, Xuan S, Long J, et al. Fluorine-containing branched sulfonated polyimide membrane for vanadium redox flow battery applications[J]. ChemElectroChem, 2018, 23(5):3695-3707.
[12]Peng S, Wu X, Sun S, et al. A morphology strategy to disentangle conductivity-selectivity dilemma in proton exchange membranes for vanadium flow batteries[J]. Process Saf Environ Prot, 2018, 116:126-136.
[13]Yu L, Lin F, Xu L, et al. Structure-property relationship study of Nafion XL membrane for high rate, long-lifespan, and all-climate vanadium flow batteries[J]. RSC Adv, 2017, 50(7):31164-31172.
[14]Kim R, Yuk S, Lee J H, et al. Scaling the water cluster size of Nafion membranes for a high performance Zn/Br redox flow battery[J]. J Membr Sci, 2018, 564:852-858.
[15]Oldenburg F J, Nilsson E, Schmidt T J, et al. Tackling capacity fading in vanadium redox flow batteries with amphoteric PBI/Nafion bilayer membranes[J]. ChemSusChem, 2019, 12(12):2620-2627.
[16]Dai J, Dong Y, Yu C, et al. A novel Nafion-g-PSBMA membrane prepared by grafting zwitterionic SBMA onto Nafion via SI-ATRP for vanadium redox flow battery application[J]. J Membr Sci, 2018, 554:324-330.
[17]Li N, Guiver M D. Ion transport by nanochannels in ion-containing aromatic copolymers[J]. Macromolecules, 2014, 47(7): 2175-2198.
[18]Ma J, Yuan J, Ming W, et al. Non-traditional processing of carbon nanotubes: A review[J]. Alex Eng J, 2022, 61(1): 597-617.
[19]Zhang G, Li R, Wang X, et al. The inhibiting water uptake mechanism of main-chain type N-spirocyclic quaternary ammonium ionene blended with polybenzimidazole as anion exchange membrane[J]. Sep Purif Technol, 2022, 291: 120950.
[20]Da Trindade L G, Borba K M N, Zanchet L, et al. SPEEK-based proton exchange membranes modified with MOF-encapsulated ionic liquid[J]. Mater Chem Phys, 2019, 236: 121792.
[21]Ru C, Li Z, Zhao C, et al. Enhanced proton conductivity of sulfonated hybrid poly(arylene ether ketone) membranes by incorporating an amino-sulfo bifunctionalized metal-organic framework for direct methanol fuel cells[J]. ACS Appl Mater Interfaces, 2018, 10(9): 7963-7973.
[22]Yang J, Lin J, Sun S, et al. Multidimensional network of polypyrrole nanotubes loaded with ZIF-67 to construct multiple proton transport channels in composite proton exchange membranes for fuel cells[J]. J Mater Sci Technol, 2023, 152: 75-85.
[23]Rao Z, Zhu D, Xu Y, et al. Enhanced proton transfer in proton-exchange membranes with interconnected and zwitterion-functionalized covalent porous material structures[J]. ChemSusChem, 2023, 16(11): e202202279.
[24]Bai E, Sun C, Zhu H, et al. Amino-functionalized multi-walled carbon nanotube/SPEEK hybrid proton exchange membrane for iron-chromium redox flow battery[J]. Batteries  Supercaps, 2024, 7(6): e202400007.
[25]Xiao Y, Ma Q, Shen X, et al. Facile preparation of polybenzimidazole membrane crosslinked with three-dimensional polyaniline for high-temperature proton exchange membrane[J]. J Power Sources, 2022, 528: 231218.
[26]Mehboob S, Lee J Y, Ahn J H, et al. Perfect capacity retention of all-vanadium redox flow battery using Nafion/polyaniline composite membranes[J]. J Ind Eng Chem, 2023, 121: 348-357.
[27]Nagarale R K, Gohil G S, Shahi V K. Sulfonated poly(ether ether ketone)/polyaniline composite proton-exchange membrane[J]. J Membr Sci, 2006, 1(280): 389-396.
[28]Cui Y, Liu Y, Wu J, et al. Porous silicon-aluminium oxide particles functionalized with acid moieties: An innovative filler for enhanced Nafion-based membranes of direct methanol fuel cell[J]. J Power Sources, 2018, 403: 118-126.
[29]Xu H, Chen K, Guo X, et al. Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application[J]. Polymer, 2007, 48(19): 5556-5564.
[30]Krishnan N N, Lee H J, Kim H J, et al. Sulfonated poly (ether sulfone)/sulfonated polybenzimidazole blend membrane for fuel cell applications[J]. Eur Polym J, 2010, 46(7): 1633-1641.
[31]Naresh R P, Mariyappan K, Dixon D, et al. Investigations on new electrolyte composition and modified membrane for high voltage Zinc-Manganese hybrid redox flow batteries[J]. Supercaps, 2021, 4(9): 1464-1472.
[32]Haisch T, Ji H, Holtz L, et al. Half-cell state of charge monitoring for determination of crossover in VRFB-considerations and results concerning crossover direction and amount[J]. Membranes, 2021, 11(4): 232.
[33]Tang A, Bao J, Skyllas-Kazacos M. Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery[J]. J Power Sources, 2011, 196(24): 10737-10747.
[34]Zeng Y K, Zhao T S, Zhou X L, et al. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries[J]. J Power Sources, 2017, 352: 77-82.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号