全氟磺酸聚合物限域空间乳液聚合及全氟离子膜应用研究 |
作者:徐康伟1, 张安旸1, 薛帅2, 王丽2, 陈越2, 邹业成2,魏刚2, 裴素朋3, 刘烽1,2, 张永明1,2 |
单位: 1. 上海交通大学 化学化工学院, 上海 200240; 2. 含氟功能膜材料全国重点实验室, 淄博 256401; 3. 上海应用技术大学 化学与环境工程学院, 上海 201418 |
关键词: 全氟质子交换膜; 全氟磺酸聚合物; 自由基聚合; 氯碱电解池; 燃料电池 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.02.002 |
分类号: TQ325.3 |
出版年,卷(期):页码: 2025,45(2):12-19 |
摘要: |
全氟磺酸(PFSA)聚合物在燃料电池和氯碱工业中具有重要应用,但传统合成方法在分子量和磺酸基团调控方面存在诸多问题。本研究提出了一种“限域空间单活性中心自由基聚合”的新方法,通过设计合成全氟聚醚羧酸铵(PFPE-NH4)作为乳化剂进行乳液聚合,实现了四氟乙烯(TFE)和全氟乙烯基醚磺酰氟(PSVE)单体的高效可控聚合。采用多种物理和化学表征方法对聚合分散状态及聚合物性能进行了详细分析。结果显示,新制备方法显著提高了PFSA聚合物的分子量及其分布(Mn=272 000,Mw/Mn=1.65),并且离子交换容量可通过单体组成比例进行调控。此外,大分子聚合物显著增强了材料的拉伸强度(34.6 MPa)。进一步,制备的离子交换膜在燃料电池和氯碱电解池中表现出优异的性能,包括高功率密度(1.59 W/cm2)、低开路电压(OCV)衰减率(0.16 mV/h)以及低电解槽电压增长率(0.91 mV/月)。本研究为高品质PFSA聚合物的制备提供了新的途径。 |
Perfluorosulfonic acid (PFSA) polymers are essential in fuel cells and the chlor-alkali industry, but traditional synthesis methods are limited in controlling molecular weight and sulfonic acid group distribution. This study introduces a novel approach called “confined space single-active-site radical polymerization”. By designing and synthesizing ammonium perfluoropolyether carboxylate (PFPE-NH4) as an emulsifier for emulsion polymerization, efficient and controllable polymerization of tetrafluoroethylene (TFE) and perfluorovinyl ether sulfonyl fluoride (PSVE) monomers was achieved. Various physical and chemical characterization techniques were used to analyze the polymerization dispersion state and polymer properties. The results showed that this new method significantly enhanced the molecular weight and distribution of PFSA polymers (Mn=272 000, Mw/Mn=1.65), with ion exchange capacity tunable through monomer composition ratios. Additionally, the macromolecular polymers markedly improved the material’s tensile strength (34.6 MPa). Furthermore, the prepared ion exchange membranes exhibited exceptional performance in fuel cells and chlor-alkali electrolysis, including high power density (1.59 W/cm2), low open circuit voltage (OCV) decay rate (0.16 mV/h), and minimal electrolyzer voltage increase rate (0.91 mV/month). This study offers a new pathway for the preparation of high-quality PFSA polymers. |
基金项目: |
国家重点研发计划(2022YFB3808900, 2022YFB3808902) |
作者简介: |
徐康伟(1998-),男,山东莱阳人,博士研究生,主要研究方向为含氟功能材料合成及应用 |
参考文献: |
[1]Han S, Wen P, Wang H, et al. Sequencing polymers to enable solid-state lithium batteries[J]. Nat Mater, 2023, 22:1515-1522. [2]Wang Y, Wu Z, Azad F M, et al. Fluorination in advanced battery design[J].Nat Rev Mater,2024,9:119-133. [3]Zhang C, Yan K, Fu C, et al. Biological utility of fluorinated compounds: from materials design to molecular imaging therapeutics and environmental remediation[J]. Chem Rev, 2022, 122:167-208. [4]Kusoglu A, Weber A Z. New insights into perfluorinated sulfonic-acid ionomers[J]. Chem Rev, 2017, 117(3): 987-1104. [5]Mauritz K A, Moore R B. State of understanding of Nafion[J]. Chem Rev, 2004, 104(10):4535-4586. [6]Primachenko O N, Marinenko E A, Odinokov A S, et al. State of the art and prospects in the development of proton-conducting perfluorinated membranes with short side chains: a review[J]. Polym Adv Technol, 2021, 32(4):1386-1408. [7]Xu K, Pei S, Zhang W, et al. Ce(Ⅲ)-terephthalic acid metal-organic frameworks as highly efficient· OH radical scavengers for fuel cells and investigation of its antioxidation mechanism[J]. Mater Today Energy, 2023, 31:101195. [8]Lei J, Liu X, Chen X, et al. Ultra-bubble-repellent sodium perfluorosulfonic acid membrane with a mussel-inspired intermediate layer for high-efficiency chlor-alkali electrolysis[J]. J Membr Sci, 2022, 644:120181. [9]Kim J Q, So S, Kim H T, et al. Highly ordered ultrathin perfluorinated sulfonic acid ionomer membranes for vanadium redox flow battery[J]. ACS Energy Lett, 2020, 6(1):184-192. [10]Noh Y S, Jeong H Y, Yoon S J, et al. Well-dispersed radical scavengers for highly durable hydrocarbon-based proton exchange membranes in water electrolysis[J]. Eur Polym J, 2024, 216:113283. [11]Parshina A, Yelnikova A, Kolganova T, et al. Perfluorosulfonic acid membranes modified with polyaniline and hydrothermally treated for potentiometric sensor arrays for the analysis of combination drugs[J]. Membranes, 2023, 13(3), 311. [12]孟庆文, 余国军, 何华. 全氟磺酸树脂的合成与应用[J]. 有机氟工业, 2023, (3):31-34. [13]张永明, 张恒, 秦胜,等. 高交换容量全氟离子交换树脂及其制备方法和用途[P].CN 101709101. 2009-12-15. [14]邵春明, 郦聪, 陈振华,等. 一种全氟磺酸树脂的溶液聚合制备方法[P]. CN 114085309. 2021-11-22. [15]邵春明, 陈振华, 郦聪,等. 一种全氟磺酸树脂的悬浮聚合制备方法[P]. CN 114213569. 2021-11-22. [16]窦增培, 白富栋, 邢航,等. 氟表面活性剂和氟聚合物(Ⅸ)--全氟磺酸树脂和全氟磺酸离子交换膜[J]. 日用化学工业, 2016, 46(9):494-501. [17]袁茂文, 柏槐基, 茹小飞,等. 一种乳液聚合三元共聚物的制备方法及其产物和应用[P]. CN 118684806. 2024-08-22. [18]袁茂文, 杨大伟, 柏槐基. 一种用于制备全氟磺酸树脂的新型磺酰氟单体及其制备方法、全氟磺酸树脂[P]. CN 118851954. 2024-09-26. [19]Kolb C G, Lehmann M, Kulmer D, et al. Modeling of the stability of water-based graphite dispersions using polyvinylpyrrolidone on the basis of the DLVO theory[J]. Heliyon, 2022, 8(12). [20]Guan P, Lei J, Xu K, et al. Origins of water state and ionic cluster morphology for high proton conductivity of short side-chain perfluorinated sulfonic acid membranes[J]. Chem Mater, 2022, 34(17):7845-7857. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号