芳香叔胺功能化聚丙烯中空纤维膜的制备与研究 |
作者:李浩1, 杨景皓1, 张世韬2, 刘衡2, 李明远1, 蔡正国1, 陈龙1, 孙俊芬1 |
单位: 1. 东华大学 先进纤维材料全国重点实验室, 材料科学与工程学院, 上海 201620; 2. 湖北博韬合纤股份有限公司, 荆门 448002 |
关键词: 本体改性; 亲水改性; 聚丙烯中空纤维膜; 芳香叔胺 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.02.003 |
分类号: TQ028 |
出版年,卷(期):页码: 2025,45(2):20-29 |
摘要: |
本研究通过本体改性的策略,将芳香叔胺基团引入聚丙烯(PP),合成了芳香叔胺基团含量(摩尔分数)为2%、2.5%、3.3%的聚丙烯共聚物PP[N(hexenol)]Ph2(PPPH),制备了具有亲水性能的PPPH中空纤维膜。采用核磁共振氢谱(NMR)、傅里叶变换红外光谱(FTIR)及扫描电子显微镜(SEM)对膜的化学结构与表面形貌进行了详尽表征;同时,利用热重分析(TGA)、接触角测量及力学性能测试对膜的综合性能进行了系统评估。结果表明,芳香叔胺基团的引入提高了PP中空纤维膜的亲水性能及热稳定性能。当芳香叔胺基团的含量为3.3%时,水接触角降低到76°,PPPH中空纤维膜的热分解温度提升至450 ℃,PPPH中空纤维膜的孔径为125 nm,孔隙率为38.7 %,断裂强度为65.0 MPa,断裂伸长率为433.0%。改性后的中空纤维膜的纯水通量达到了385.0 L/(m2·h),是PP中空纤维膜纯水通量的1.6倍。此外,PPPH中空纤维膜在高浓度盐溶液以及碱性溶液环境中均表现出良好的化学稳定性。 |
In this study, polypropylene copolymer PP[N(hexenol)]Ph2(PPPH) with aromatic tertiary amine group contents (mole fraction) of 2%, 2.5% and 3.3% were synthesized by bulk modification strategy, and PPPH hollow fiber membranes with hydrophilic properties were synthesized by introducing aromatic tertiary amine groups into polypropylene (PP). Nuclear magnetic resonance hydrogen spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) were used to characterize the chemical structure and surface morphology of the membranes. At the same time, thermogravimetric analysis (TGA), contact angle measurement and mechanical property test were used to systematically evaluate the comprehensive properties of the membranes. The results showed that the introduction of aromatic tertiary amine groups improved the hydrophilic performance and thermal stability of PP hollow fiber membranes. When the content of the aromatic tertiary amine group was 3.3%, the water contact angle was reduced to 76 ℃, the thermal decomposition temperature of PPPH hollow fiber membrane was increased to 450 ℃, the pore size of PPPH hollow fiber membrane was 125 nm, the porosity was 38.7 %, the breaking strength was 65.0 MPa, and the elongation at break was 433.0%. The pure water flux of the modified hollow fiber membrane reached 385.0 L/(m2·h), which was 1.6 times that of the PP hollow fiber membrane. In addition, PPPH hollow fiber membranes exhibit good chemical stability in both high-concentration salt solution and alkaline solution environments. |
基金项目: |
中央高校基本科研业务费专项资金 |
作者简介: |
李浩(1999-),男,河南周口人,硕士研究生,研究方向为功能高分子材料 |
参考文献: |
[1]肖长发,何本桥,武春瑞,等. 我国中空纤维膜技术与产业发展战略研究[J]. 中国工程科学,2021,(2):153-160. [2]邱中勇,何春菊.DIP法聚丙烯中空纤维纳滤膜[J]. 膜科学与技术,2022,42(3):7-14. [3]李玉懂,张晶,李妍妍,等.基于多巴胺亲水改性的聚丙烯中空纤维膜及油水分离性能研究[J]. 膜科学与技术,2024,44(5):20-31. [4]Ojstrek A, Chemelli A, Osmic A, et al. Dopamine-assisted modification of polypropylene film to attain hydrophilic mineral-rich surfaces[J]. Polymers, 2023, 15(4): 902. [5]Alaburdaite R, Krylova V.Polypropylene film surface modification for improving its hydrophilicity for innovative applications[J]. Polym Degrad Stab, 2023, 211:110334. [6]李思诺,刘静,孙凯,等.贻贝仿生矿化超亲水表面膜的制备及其油-水分离性能[J]. 膜科学与技术,2024,44(4):65-74. [7]Dai J, Liang M, Ren P, et al. Surface modification of polypropylene with porous polyacrylamide coating[J]. Mater Lett, 2020, 266(10):127-131. [8]Li A, Gu K, Zheng H, et al. Preparation of the hydrophilic coating layer on polypropylene microporous membrane surface by dip-coating the hydrophilic agent[J]. J Coat Technol Res, 2022, 19(6):1655-1664. [9]尹艳红,王辉,刘玉霞,等. 聚丙烯微孔膜表面接枝聚合丙烯酰胺的改性研究[J]. 膜科学与技术,2008,28(1):55-59. [10]Wang Y, Kim J H, Choo K H, et al. Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization[J]. J Membr Sci, 2000, 169(2):269-276. [11]Yang Q, Xu Z K, Dai Z W, et al. Surface modification of polypropylene microporous membranes with a novel glycopolymer[J].Chem Mater,2005,17(11):3050-3058. [12]Guo H, Ulbricht M. The effects of (macro) molecular structure on hydrophilic surface modification of polypropylene membranes via entrapment[J]. J Colloid Interf Sci, 2010, 350(1):99-109. [13]Saffar A, Carreau P J, Ajji A, et al. Development of polypropylene microporous hydrophilic membranes by blending with PP-g-MA and PP-g-AA[J]. J Membr Sci, 2014, 462(28):50-61. [14]王芳,王娟,赵雅静,等. 热致相分离法制备亲水性聚丙烯中空纤维膜[J]. 膜科学与技术,2018,38(3):68-74. [15]Xie M, Wang L C. Construction of porous and hydrophilic polypropylene-based membrane with microphase separation in amorphous region[J]. Polymer, 2024, 298:126888. [16]张一鸣. 改性聚丙烯合成、表征及其作为共混增容剂的研究[D].大连: 辽宁师范大学,2014. [17]段克尧. 羟基化聚丙烯中空纤维膜的研究[D].上海:东华大学,2023. [18]Shang R N,Gao H, Luo F L,et al. Functional isotactic polypropylenes via efficient direct copolymerizations of propylene with various amino-functionalized α-olefins[J]. Macromolecules, 2019, 52(23):9280-9290. [19]范舒阳,李浩,张先明,等. 氨基功能化聚丙烯的制备与性能[J]. 高分子材料科学与工程,2015,31(8):167-171. [20]Baranov D S, Uvarov M N, Kazantsev M S, et al. Diaza-analogs of benzopyrene and perylene containing thienyl and 4-(phenylamino)phenyl groups: Synthesis, characterization, optical and electrochemical properties[J]. Dyes Pigm, 2017, 136:707-714. [21]许晓洲,刘仪,何民辉,等.共聚结构和分子量对热塑性聚酰亚胺树脂熔融与耐热性能的影响[J].高等学校化学学报,2021,42(3):919-928. [22]Brendan W, Egan B, Janani S, et al. Evolution of free volume elements in amorphous polymers undergoing uniaxial deformation: a molecular dynamics simulations study[J]. Mol Syst Des Eng, 2024,9(12):214-225. [23]马松峰,刘超,孙晓伟,等. 咔唑基团功能化全同聚丙烯抗紫外老化性能研究[J].高分子学报,2022,53(12):1523-1533. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号