己六醇表面接枝改性制备抗污染聚酰胺反渗透膜研究
作者:张笑雨12, 田欣霞2, 荆兆敬3, 田磊2, 王海涛1, 魏杨扬2, 常娜4, 王剑2, 李兆魁2
单位: 1. 天津工业大学 环境科学与工程学院, 天津 300387; 2. 自然资源部天津海水淡化与综合利用研究所, 天津 300192; 3. 天津工业大学 纺织科学与工程学院, 天津 300387;4. 天津工业大学 化学工程与技术学院, 天津 300387
关键词: 反渗透膜; 己六醇; 接枝改性; 水通量; 抗污染
DOI号: 10.16159/j.cnki.issn1007-8924.2025.02.004
分类号: TQ051.893
出版年,卷(期):页码: 2025,45(2):30-39

摘要:
芳香族聚酰胺反渗透膜已广泛应用于海水及苦咸水淡化、废水处理及回用等领域,然而膜污染一直是制约反渗透系统经济性、稳定性和可靠性的关键问题之一。利用界面聚合后聚酰胺表面残留的酰氯基团,以己六醇为抗污染功能单体,对聚酰胺膜进行表面接枝改性,制备抗污染的高通量反渗透膜。实验结果表明,改性后的反渗透膜具有更小的接触角、更大的粗糙度、更大的水通量及更强的抗污染性。在保持脱盐率不变的前提下,改性膜(M-2)的水通量较未改性膜提高46.6%[达到61.0 L/(m2·h)]。采用牛血清蛋白进行膜表面污染实验,改性膜(M-2)的水通量下降率(17.4%)低于未改性膜(20.0%),采用纯水清洗后,改性膜(M-2)的通量恢复率(87.3%)高于未改性膜(84.1%)。结果显示,己六醇表面接枝改性反渗透膜能显著提高膜的水通量和抗污染性能。
 
?Aromatic polyamide (PA) reverse osmosis (RO) membranes have been extensively employed in seawater desalination, brackish water desalination and wastewater treatment-reuse. However, membrane fouling remains a critical issue that restricts the economy, stability and reliability of RO systems. Herein, dulcitol was used as the antifouling functional monomer to modify the RO membrane by reacting with the residual acyl chloride groups on the surface of PA layer. The experimental results showed that the modified membrane exhibited a decreased water contact, enhanced roughness, increased water flux and enhanced anti-fouling property. The water flux of the modified membrane (M-2) was increased by 46.6% [up to 61.0  L/(m2·h)] , while the rejection rate was remained, compared with that of the unmodified membrane. The water flux reduction rate (17.4%) of modified membrane (M-2) was lower than that of unmodified membrane (20.0%), and the flux recovery rate (87.3%) of modified membrane (M-2) was higher than that of unmodified membrane (84.1%) after cleaning with pure water. These results suggested that the dulcitol grafting can improve the water flux and antifouling property of RO membranes. 
 

基金项目:
国家重点研发计划(2023YFE0101000); 天津市科技计划项目(23ZGCXQY00040); 中央级公益性科研院所基本科研业务费专项资金项目(K-JBYWF-2024-QR-04,K-JBYWF-2024-T07)

作者简介:
张笑雨(1997-),女,河北邯郸人,硕士生,研究方向为抗污染反渗透膜

参考文献:
[1]Liu Y, Xin Z, Wang M, et al. Optimizing separation layer structure of polyamide composite membrane for high permselectivity based on post-treatment: A review[J]. Desalination, 2024, 580:117585.
[2]康燕, 梁洁, 赵连瑞, 等. 抗污染聚酰胺复合反渗透膜研究进展[J]. 山东化工, 2024, 53(12):104-109.
[3]Guo Y, Ji Y, Wu B, et al. High-flux zwitterionic nanofiltration membrane constructed by in-situ introduction method for monovalent salt/antibiotics separation[J]. J Membr Sci, 2020, 593:117441.
[4]He B, Peng H, Chen Y, et al. High performance polyamide nanofiltration membranes enabled by surface modification of imidazolium ionic liquid[J]. J Membr Sci, 2020, 608:118202.
[5]Guo X, Zhao B, Liang W, et al. High flux nanofiltration membrane via surface modification using spirocyclic quaternary ammonium diamine for efficient antibiotics/salt separation[J]. Sep Purif Technol, 2023, 325:124736.
[6]Weng X, Ji Y, Ma R, et al. Superhydrophilic and antibacterial zwitterionic polyamide nanofiltration membranes for antibiotics separation[J]. J Membr Sci, 2016, 510:122-130.
[7]Jia M, Zhang W, Zhang X, et al. Hydroxypropyl-β-cyclodextrin-based polyester TFC membrane for efficient antibiotic desalination[J]. Sep Purif Technol, 2023, 317:123884.
[8]Yang L, Zhang X, Rahmatinejad J, et al. Triethanolamine-based zwitterionic polyester thin-film composite nanofiltration membranes with excellent fouling-resistance for efficient dye and antibiotic separation[J]. J Membr Sci, 2023, 670:121355.
[9]Wang Z, Guo S, Zhang B, et al. Hydrophilic polymers of intrinsic microporosity as water transport nanochannels of highly permeable thin-film nanocomposite membranes used for antibiotic desalination[J]. J Membr Sci, 2019, 592:117375.
[10]Wu B, Wang N, Lei J, et al. Intensification of mass transfer for zwitterionic amine monomers in interfacial polymerization to fabricate monovalent salt/antibiotics separation membrane[J]. J Membr Sci, 2022, 643:121022.
[11]Wu B, Wang N, Shen Y, et al. Inorganic salt regulated zwitterionic nanofiltration membranes for antibiotic/monovalent salt separation[J]. J Membr Sci, 2023, 666:121144.
[12]Huang B, Tang Y, Zeng Z, et al. Enhancing nanofiltration performance for antibiotics/NaCl separation via water activation before microwave heating[J]. J Membr Sci, 2021, 629:119285.
[13]Asadollahi M, Bastani D, Musavi A. Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: A review[J]. Desalination, 2017, 420:330-383.
[14]Xu G, Wang J, Li C. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: Surface modifications and nanoparticles incorporations[J]. Desalination, 2013, 328:83-100.
[15]Saeki D, Tanimoto T, Matsuyama H. Anti-biofouling of polyamide reverse osmosis membranes using phosphorylcholine polymer grafted by surface-initiated atom transfer radical polymerization[J]. Desalination,2014, 350:21-27.
[16]Shafi Z, Khan Z, Yang R, et al. Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling[J]. Desalination, 2015, 362:93-103.
[17]Yu H, Kang Y, Yu L, et al. Grafting polyzwitterions onto polyamide by click chemistry and nucleophilic substitution on nitrogen: a novel approach to enhance membrane fouling resistance[J]. J Membr Sci, 2014, 449:50-57.
[18]Kang G, Yu H, Liu Z, et al. Surface modification of a commercial thin film composite polyamide reverse osmosis membrane by carbodiimide-induced grafting with poly (ethylene glycol) derivatives[J]. Desalination, 2011, 275:252-259.
[19]Liu M, Chen Q, Wang L, et al. Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA) [J]. Desalination, 2015, 367:11-20.
[20]Hu Y, Lu K, Yan F, et al. Enhancing the performance of aromatic polyamide reverse osmosis membrane by surface modification via covalent attachment of polyvinyl alcohol (PVA) [J]. J Membr Sci, 2016, 501:209-219.
[21]Kang G, Liu M, Lin B, et al. A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly (ethylene glycol)[J]. Polymer, 2007, 48(5):1165-1170.
[22]Akbari A, Derikvandi Z, Rostami M. Influence of chitosan coating on the separation performance, morphology and anti-fouling properties of the polyamide nanofiltration membranes[J]. J Ind Eng Chem, 2015, 28:268-276.
[23]刘毅锋, 张娟. 聚乙烯醇树脂的改性及应用[J]. 现代化工, 1991, 11(6):56-57.
[24]Akin O, Temelli F. Probing the hydrophobicity of commercial reverse osmosis membranes produced by interfacial polymerization using contact angle, XPS, FTIR, FE-SEM and AFM[J]. Desalination, 2011, 278(1):387-396.
[25]Tang Y, Kwon N, Leckie O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes I. FTIR and XPS characterization of polyamide and coating layer chemistry[J]. Desalination, 2009, 242(1/2/3):149-167.
[26]Singh S, Joshi S, Trivedi J, et al. Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions[J]. J Membr Sci, 2005, 278(1):19-25.
[27]Li C, Zhao Y, Lai G, et al. Investigation of aqueous and organic co-solvents roles in fabricating seawater reverse osmosis membrane[J]. J Membr Sci, 2022, 645:120187.
[28]Zhu S, Zhao S, Wang Z, et al. Improved performance of polyamide thin-film composite nanofiltration membrane by using polyetersulfone/polyaniline membrane as the substrate[J]. J Membr Sci, 2015, 493:263-274.
[29]Suresh P, Plapp B V. The Thr45Gly substitution in yeast alcohol dehydrogenase substantially decreases catalysis, alters pH dependencies, and disrupts the proton relay system[J]. Chem-Biol Interact, 2021, 349:109650.
[30]Jing Z, Wang J, Zhao H, et al. Regulation of micro-structure and surface property of SWRO membrane via introducing albumin into polyamide layer for improving permselectivity[J]. Desalination, 2023, 555:116551.
[31]许骏. 抗污染耐氯芳香聚酰胺复合反渗透膜制备及其性能研究[D]. 天津: 天津大学, 2014.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号