三元共聚聚酰亚胺质子交换膜的制备及性能
作者:魏馨雨, 翟凤霞, 魏恺颉, 赵世成
单位: 上海市多相结构材料化学工程重点实验室, 华东理工大学 化工学院, 上海 200237
关键词: 聚酰亚胺; 嵌段共聚; 质子交换膜
DOI号: 10.16159/j.cnki.issn1007-8924.2025.02.005
分类号: TQ028; O63
出版年,卷(期):页码: 2025,45(2):40-47

摘要:
为了开发具有高质子传导性的新型质子交换膜,本文选择了双(4-氨基苯氧基)联苯-3,3′-二磺酸(BAPBDS)、4,4′-二(4-氨基苯氧基)联苯(BAPB)和1,4,5,8-萘四甲酸酐(NTDA)三种单体,通过控制磺化单体与非磺化单体的比例和聚合方式,分别制备了聚酰亚胺的无规共聚物和嵌段共聚物,并对其导电性、拉伸性能和化学稳定性进行了表征。结果表明,无规共聚物膜和嵌段共聚物膜的电导率都随温度升高而增大,在80 ℃时分别达到了0.089 S/cm和0.129 S/cm,嵌段共聚物膜显示出更好的导电性能。这可能是由于其亲疏水相分离,建立起更多促进质子传输的离子通道所致。但是,无规共聚物膜在80 ℃水中浸泡可以达到3 000 h不破裂,而相同磺化度的嵌段共聚物膜只能保持1 500 h不破裂。同时无规共聚物膜和嵌段共聚物膜在常温下拉伸强度分别为49 MPa和14 MPa,断裂伸长率分别为29%和23%。综上所述,无规共聚物膜虽然其质子电导率低于嵌段共聚物膜,但其展示出更好的耐水解稳定性和机械性能,研究结果能够为高性能聚酰亚胺质子交换膜的设计制备提供指导。
 
In order to develop novel proton exchange membranes with high proton conductivity, this paper selected 4,4′-bis(4-aminophenoxy)biphenyl-3,3′-disulfonic acid(BAPBDS),4,4′-bis(4-aminophenoxy)biphenyl (BAPB), and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) as monomers. By controlling the ratio of sulfonated to non-sulfonated monomers and the polymerization method, random copolymers and block copolymers of polyimide were prepared, and their conductivity, tensile properties, and chemical stability were characterized. The results showed that the conductivity of both random copolymer membranes and block copolymer membranes increased with temperature, reaching 0.089 S/cm and 0.129 S/cm at 80 ℃, respectively. This is due to the phase separation of hydrophilic and hydrophobic domains, which establishes more ion channels that promote proton transfer. However, the random copolymer membrane could withstand immersion in water at 80 ℃ for up to  3 000 hours without rupture, while the block copolymer membrane could only last for 1 500 hours under the same degree of sulfonation. The tensile strength of the two at room temperature were 49 MPa and 14 MPa, respectively, with elongation at break of 29% and 23%, respectively. In summary, although the proton conductivity of random copolymer membranes was lower than that of block copolymer membranes, they exhibited better hydrolytic stability and mechanical properties. The research findings can provide guidance for the design and preparation of high-performance polyimide proton exchange membranes. 
 

基金项目:

作者简介:
魏馨雨(2001-),女,安徽宣城人,硕士研究生,从事磺化聚酰亚胺复合膜的研究.

参考文献:
[1]Kreuer K D. Ion conducting membranes for fuel cells and other electrochemical devices[J]. Chem Mater, 2014, 26(1): 361-380.
[2]徐国效, 吴君丽, 李静, 等. Nafion膜高温改性研究进展 [J]. 膜科学与技术, 2023, 43(6): 180-190.
[3]Giffin G A, Haugen G M, Hamrock S J, et al. Interplay between structure and relaxations in perfluorosulfonic acid proton conducting membranes[J]. J Am Chem Soc, 2013, 135(2): 822-834.
[4]Sahu A K, Ketpang K, Shanmugam S, et al. Sulfonated graphene-Nafion composite membranes for polymer electrolyte fuel cells operating under reduced relative humidity[J]. J Phys Chem C, 2016, 120(29): 15855-15866.
[5]Wu W, Li Y, Liu J, et al. Molecular-level hybridization of Nafion with quantum dots for highly enhanced proton conduction[J]. Adv Mater, 2018, 30(16):1-22.
[6]Imran M A, He G, Wu X, et al. Fabrication and characterization of sulfonated polybenzimidazole/sulfonated imidized graphene oxide hybrid membranes for high temperature proton exchange membrane fuel cells[J]. J Appl Polym Sci, 2019, 136(34):1-13.
[7]Pan H, Chen S, Jin M, et al. Preparation and properties of sulfonated polybenzimidazole-polyimide block copolymers as electrolyte membranes [J]. Ionics, 2018, 24(6): 1629-1638.
[8]Chandra Sutradhar S, Ahmed F, Ryu T, et al. A novel synthesis approach to partially fluorinated sulfonimide based poly(arylene ether sulfone)s for proton exchange membrane[J]. Int J Hydrogen Energy, 2019, 44(22): 11321-11331.
[9]Thompson T N, Arnett N Y. Effect of phosphonated triazine monomer additive in disulfonated poly (arylene ether sulfone) composite membranes for proton exchange membrane fuel cells[J]. Polymer, 2019, 171: 34-44.
[10]Zhang Z, Ren J, Xu J, et al. Adjust the arrangement of imidazole on the metal-organic framework to obtain hybrid proton exchange membrane with long-term stable high proton conductivity [J]. J Membr Sci, 2020, 607:1-13.
[11]Ding L, Wang Y, Wang L, et al. A simple and effective method of enhancing the proton conductivity of polybenzimidazole proton exchange membranes through protonated polymer during solvation [J]. J Power Sources, 2020, 455:1-10.
[12]高倩, 程丹, 段曼华, 等. 燃料电池用高性能质子交换膜研究进展[J]. 石油化工高等学校学报, 2024, 37(4): 66-75.
[13]孙丽君, 吕雪燕, 丁陆阳, 等. 金属有机框架/离子液体增强的质子交换膜的制备及性能[J]. 材料工程, 2024, 52(8): 150-158.
[14]Watari T, Fang J, Tanaka K, et al. Synthesis, water stability and proton conductivity of novel sulfonated polyimides from 4,4′-bis(4-aminophenoxy)biphenyl-3,3′-disulfonic acid[J]. J Membr Sci, 2004, 230(1): 111-120.
[15]Li N, Liu J, Cui Z, et al. Novel hydrophilic-hydrophobic multiblock copolyimides as proton exchange membranes: enhancing the proton conductivity [J]. Polymer, 2009, 50(19): 4505-4511.
[16]仇心声, 吴芹, 史大昕, 等. 离子型交联磺化聚酰亚胺质子交换膜的制备及高温燃料电池性能 [J]. 高等学校化学学报, 2022, 43(8): 245-252.
[17]Yang J, Guo Y Y, Liu L, et al. Preparation of proton exchange membrane with intrinsic micropores constructing efficient ion transport channels based on segmented copolymer (sulfonated polyimide)[J]. J Energy Storage, 2023, 72:1-10.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号