超疏水PVDF纳米纤维膜制备及其分离性能研究
作者:孙晓明1, 于飞云1, 韩旭1, 王明2, 侯影飞2
单位: 1. 中油辽河工程有限公司, 盘锦 124010; 2. 中国石油大学(华东) 重质油国家重点实验室, 青岛 266580
关键词: 聚偏氟乙烯; 静电纺丝; 正十八烷三氯硅烷; 超疏水; 油水分离
DOI号: 10.16159/j.cnki.issn1007-8924.2025.02.009
分类号: X703;TQ028
出版年,卷(期):页码: 2025,45(2):75-82

摘要:
含油废水已成为当前最为严峻的环境挑战之一,针对这一问题,膜处理技术因其操作便捷、结构简洁及高效的分离性能,在含油废水的处理与处置中备受研究者关注。其中,超疏水膜材料凭借适当的粗糙度和极低的表面能特性,在抗污染方面表现突出。本文采用了一种创新的表面改性方法,以正十八烷三氯硅烷(OTS)为基础,通过其在油水界面上的硅氯键水解及随后的脱水缩合自聚反应,制备超疏水薄膜。为增强薄膜的稳定性和耐久性,进一步引入了聚二甲基硅氧烷(PDMS)以在膜表面构建稳定的纳米粗糙结构。该改性方式有效地实现了膜的超疏水转化。以石油醚、正辛烷、四氯甲烷和甲苯为模拟分离乳液进行了通量和油水分离性能测试,改性聚偏氟乙烯(PVDF)膜表现出更高的通量以及95%以上的油水分离性能。此外还对超疏水改性PVDF膜的相关性能进行表征,并在无纺布、玻璃纤维、商业微孔微滤膜、棉布和滤纸等固体表面进行应用,分别进行固体表面接触角表征,发现接触角均值为玻璃纤维154°、滤纸156°、棉布152°、微孔微滤膜159°和无纺布150°,均表现出超疏水性。
 
Oil-containing wastewater has become one of the most serious environmental challenges at present. In response to this problem, membrane treatment technology has attracted much attention from researchers in the treatment and disposal of oil-containing wastewater due to its convenient operation, simple structure and efficient separation performance. Among them, superhydrophobic membrane materials stand out in terms of anti-fouling performance by virtue of appropriate roughness and extremely low surface energy characteristics.In this paper, an innovative surface modification method was adopted. Based on n-octadecyltrichlorosilane (OTS), the superhydrophobic thin membrane was prepared through the hydrolysis of silicon-chlorine bonds on the oil-water interface and the subsequent dehydration condensation self-polymerization reaction. To enhance the stability and durability of the membrane, polydimethylsiloxane (PDMS) was further introduced to construct a stable nano-rough structure on the membrane surface. This modification method effectively achieved the superhydrophobic transformation of the membrane.Flux and oil-water separation performance tests were carried out using petroleum ether, n-octane, carbon tetrachloride and toluene as simulated separation emulsions. The modified polyvinylidene fluoride (PVDF) membrane exhibited a higher flux and an oil-water separation performance of over 95%. In addition, the relevant properties of the superhydrophobic modified  PVDF membrane were characterized, and its applications on solid surfaces such as non-woven fabrics, glass fibers, commercial microporous microfiltration membranes, cotton fabrics and filter papers were also studied. The contact angle characterizations on these solid surfaces showed that the average contact angles were 154° for glass fibers, 156° for filter papers, 152° for cotton fabrics, 159° for microporous microfiltration membranes and 150° for non-woven fabrics, all of which exhibited superhydrophobicity. 
 

基金项目:
中央高校基本科研业务费(24CX02021A)

作者简介:
孙晓明(1986-),男,辽宁丹东人,高级工程师,主要研究方向为油田污水处理及注水设计和研究

参考文献:
[1]贾舒捷.高COD含油废水的处理研究[J].山西化工,2023,43(9):221-222.
[2]张紫璇.渤海焦油球的源识别及降解命运研究[D].烟台:中国科学院大学(中国科学院烟台海岸带研究所),2023.
[3]李倩玮,张苗,韦标,等.工业废催化剂耦合固定化石油降解菌微球高效处理含油废水[J].工业水处理,2024,1-20.
[4]刘成龙.含油污泥与煤矸石共热解特性研究与机理分析[D].北京:北京化工大学,2024.
[5]兰倩,朱平,郭鸿江.基于静电纺丝技术的油水分离纳米纤维膜研究进展[J].中国塑料,2024,38(12):19-23.
[6]冯颖,王卓,王子鑫,等.壳聚糖复合渗透汽化膜分离有机溶剂的研究进展[J].复合材料学报, 2025.
[7]聂毅,高红帅,张香平,等.离子液体溶解天然高分子材料及制备功能纤维/膜新过程[J].中国科学:化学,2025.
[8]徐健.钴基纳米材料改性复合纳滤膜的制备及染料分离性能和机理研究[D].合肥:安徽理工大学,2024.
[9]乔晓龙,李季,朱琳涛,等.基于二维MoS2纳米材料分离膜的制备及其应用研究进展[J].陕西科技大学学报,2025.
[10]蒋晨啸,陈秉伦,张东钰,等.我国盐湖锂资源分离提取进展[J].化工学报,2022,73(2):481-503.
[11]朱国全.聚丙烯腈对聚乙烯醇膜形貌和性能的改进[J].山东化工,2024,53(2):63-64.
[12]林昊,郭东毅,吕谦,等.玉米秸秆基木质素-醋酸纤维素紫外屏蔽膜的制备及其性能[J].复合材料学报,2023,40(8):4768-4778.
[13]蒋也,郭小滔,杜丽君,等.磺化聚三氟苯乙烯对不同溶剂体系制备聚砜超滤膜结构及性能影响研究[J].合成技术及应用,2023,38(1):38-43.
[14]李明慧,代梦露,刘凤萍,等.低介电常数聚酰亚胺研究进展:结构与性能的关系[J].高分子通报,2023,36(8):1042-1075.
[15]杜江缘,叶贞丽,罗惠文.聚偏氟乙烯膜亲水改性研究进展[J].化学工业,2022,40(03):65-73.
[16]张海宝.氟树脂在特种阀门上的应用研究[D].银川:宁夏大学,2021.
[17]邱琳,杨桂花,蒋启蒙,等.疏水疏油纤维素基功能材料的制备及其应用研究进展[J].复合材料学报,2025.
[18]纪海兰.新型Janus膜的制备及其在直接接触式膜蒸馏中的应用[D].苏州:苏州科技大学,2022.
[19]李冬瑶.掺锌镁PVDF仿生骨膜表征及物理性能研究[D].乌鲁木齐:新疆医科大学,2023.
[20]贾彤彤.静电纺丝PVDF基纳米纤维膜的构筑及在免疫层析检测中的应用研究[D].西安:陕西科技大学,2022.
[21]孙炟.基于PVDF疏水材料的溶液除湿半渗透膜改性研究[D].上海:上海交通大学,2021.
[22]侯常春.环氧树脂超疏水复合涂层的制备及其性能研究[D].呼和浩特:内蒙古工业大学,2023.
[23]韩林海.等离子体改性PVDF膜及其在电场下的膜通量研究[D].西安:西安理工大学,2023.
[24]刘峰.基于聚偏氟乙烯支撑层的聚酰胺复合膜的制备及性能研究[D].无锡:江南大学,2022.
[25]薛贵兰.聚多巴胺改性压电聚偏氟乙烯膜调控干细胞黏附及钙含量的研究[D].成都:西南交通大学,2021.
[26]张海静.超疏水PVDF杂化膜的制备与性能研究[D].天津:河北工业大学,2020.
[27]张大帅.超疏水PVDF/PVC复合膜的制备及其在膜蒸馏海水淡化中的应用[D].海口:海南师范大学,2020.
[28]王晓嵩.PVDF基复合储能电介质材料服役特性综合优化研究[D].济南:山东大学,2023.
[29]李少伟.疏水化表面处理的现象与机制[D].北京:中国石油大学(北京),2017.
[30]彭勃.疏水SiO2粒子的设计、制备及改性环氧树脂的研究[J].高分子学报,2023,54(12):1844-1856.
[31]阮欢.锂离子电池硅基负极材料的制备及其电化学性能研究[D].西安:陕西科技大学,2023. 
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号