电渗析用离子交换膜改性及抗污染性能研究
作者:张小虎1, 郭晓羽1, 薛健2, 张岩13, 郝晓坪1, 霍梦欣1, 张娴1
单位: 1. 山东航空学院,滨州 256600; 2. 滨化集团股份有限公司,滨州 256600; 3. 浙江工业大学,杭州 310014
关键词: 表面改性; 阴离子交换膜; 抗污染性能
DOI号: 10.16159/j.cnki.issn1007-8924.2025.02.015
分类号: TQ028
出版年,卷(期):页码: 2025,45(2):127-137

摘要:
阴离子交换膜(AEMs)的有机污染严重地影响了离子交换膜的工业安全应用,对其进行表面改性是有效的解决办法。本文选用两种天然的物质多巴胺(DA)和壳聚糖(CTS)作为改性剂,研究了电渗析用离子交换膜的抗污染性能。采用富含酚羟基的DA对阴离子交换膜表面进行接枝改性作为膜中间层,同时利用天然材料壳聚糖(CTS)进行改性制备磺化壳聚糖(PCS),将PCS涂覆在DA接枝改性的膜表面,构建膜抗污染层。通过傅里叶红外光谱、扫描电镜、水接触角、脱盐率等表征膜结构与性能。结果表明,水接触角由原始膜的99.1°降低至45.08°,动态接触角20 s时降低至33.8°。对改性膜进行性能测试,在被十二烷基苯磺酸钠(SDBS)污染190 min后,M-PCS-48(磺化壳聚糖二次改性48 h)脱盐率为73.3%。在200 min的污染实验中M-PCS-48两侧的跨膜电压几乎不变,证明其抗污染稳定性很好。通过探究改性条件对改性膜性质的影响发现,4 g/L的DA和PCS改性48 h改性效果最佳,该改性条件下获得的M-PCS-48修饰阴离子交换膜抗污染能力明显提高,稳定性良好且不影响其脱盐性能。
 
The organic fouling of anion exchange membranes (AEMs) significantly compromises their industrial safety applications, and surface modification has been proven to be an effective solution. In this study, two natural substances, dopamine (DA) and chitosan (CTS), were selected as modifiers to investigate the antifouling properties of ion exchange membranes for electrodialysis. The AEM surface was first graft-modified with DA, rich in phenolic hydroxyl groups, as an intermediate layer. Subsequently, sulfonated chitosan (PCS) was prepared using the natural material CTS and coated onto the DA-grafted membrane surface to construct an antifouling layer. The structure and properties of the membrane were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, water contact angle, and desalination rate. The results showed that the water contact angle was reduced from 99.1° to 45.08° for the pristine membrane, and the dynamic contact angle was reduced to 33.8° at 20 s. The performance of the modified membrane was tested, and the desalination rate of M-PCS-48 (sulfonated chitosan secondary modified for 48 h) was 73.3% after 190 min of contamination by sodium dodecylbenzene sulfonate (SDBS). The transmembrane voltage on both sides of M-PCS-48 was almost unchanged in the 200 min fouling performance, which proved its good stability against fouling. By exploring the effects of modification conditions on the properties of modified membrane, it was found that the best modification effect was achieved by 4 g/L of DA and PCS modification for 48 h. Under these conditions, the M-PCS-48 modified anion exchange membrane enhanced significantly antifouling capability, excellent stability, and maintained desalination performance. 
 

基金项目:
山东省自然科学基金资助项目(ZR2022MB101, ZR2021ME218); 山东省大学生创新创业训练计划项目(S202410449050)

作者简介:
张小虎(1998-),男,安徽六安人,硕士研究生,研究方向为阴离子交换膜的有机污染及性能

参考文献:
[1]An W, Zhao J, Lu J, et al. Zero-liquid discharge technologies for desulfurization wastewater: A review[J]. J Environ Manage, 2022, 321: 115953.
[2]Shah K M, Billinge I H, Chen X, et al. Drivers, challenges, and emerging technologies for desalination of high-salinity brines: A critical review[J]. Desalination, 2022, 538: 115827.
[3]Zhao Z, Shi S, Cao H, et al. Comparative studies on fouling of homogeneous anion exchange membranes by different structured organics in electrodialysis[J]. J Environ Sci, 2019, 77: 218-228.
[4]Mikhaylin S, Bazinet L. Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control[J]. Adv Colloid Interfac, 2016, 229: 34-56.
[5]Zhao Z J, Li Y J, Jin D, et al.Modification of an anion exchange membrane based on rapid mussel-inspired deposition for improved antifouling performance[J].Colloids Surf A, 2021, 615: 126267.
[6]Zhao C, Yang G, Luo Q X . Plasma etching assisted fabrication of PDA/PEI modified PVDF membranes for oil/water emulsion separation[J]. J Mater Sci, 2024, 59(20): 9165-9181.
[7]Al Khatib M, Costa J, Spinelli D, et al. Homogentisic acid and gentisic acid biosynthesized pyomelanin mimics: Structural characterization and antioxidant activity[J]. Int J Mol Sci, 2021, 22(4): 1739.
[8]Wang Y, Yang Y, Zha Z, et al. Porous organic cage supramolecular membrane showing superior monovalent/divalent salts separation[J]. J Membr Sci, 2022, 659: 120782.
[9]Yang Y, Li Y, Goh K, et al. Dopamine-intercalated polyelectrolyte multilayered nanofiltration membranes: toward high permselectivity and ion-ion selectivity[J]. J Membr Sci, 2022, 648: 120337.
[10]Chew N G P, Zhao S, Malde C, et al. Polyvinylidene fluoride membrane modification via oxidant-induced dopamine polymerization for sustainable direct-contact membrane distillation[J]. J Membr Sci, 2018, 563: 31-42.
[11]Wang Y, Yang Y, Zha Z, et al. Porous organic cage supramolecular membrane showing superior monovalent/divalent salts separation[J]. J Membr Sci, 2022, 659: 120782.
[12]Yang Y, Li Y, Goh K, et al. Dopamine-intercalated polyelectrolyte multilayered nanofiltration membranes: toward high permselectivity and ion-ion selectivity[J]. J Membr Sci, 2022, 648: 120337.
[13]李玉懂,张晶,李妍妍,等.基于多巴胺亲水改性的聚丙烯中空纤维膜及油水分离性能研究[J].膜科学与技术,2024,44(5):20-31.
[14]Zhang C, Ou Y, Lei W X, et al. CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability[J]. Angew Chem Int Ed, 2016, 55(9): 3054-3057.
[15]Zhang C, Li H N, Du Y, et al. CuSO4/H2O2-triggered polydopamine/poly (sulfobetaine methacrylate) coatings for antifouling membrane surfaces[J]. Langmuir, 2017, 33(5): 1210-1216.
[16]Li G, Liu B, Bai L, et al. Improving the performance of loose nanofiltration membranes by poly-dopamine/zwitterionic polymer coating with hydroxyl radical activation[J]. Sep Purif Technol, 2020, 238: 116412.
[17]Seidi F, Yazdi M K, Jouyandeh M, et al. Chitosan-based blends for biomedical applications[J]. Int J Biol Macromol, 2021, 183: 1818-1850.
[18]田欣欣, 王暄, 彭维, 等. 多巴胺氧化聚合膜表面改性技术研究进展[J]. 膜科学与技术, 2021, 41(1): 152-159.
[19]Iqbal Y, Ahmed I, Irfan M F, et al. Recent advances in chitosan-based materials; The synthesis, modifications and biomedical applications[J]. Carbohyd Polym, 2023, 321: 121318.
[20]Gao Y, Wu Y. Recent advances of chitosan-based nanoparticles for biomedical and biotechnological applications[J]. Int J Biol Macromol, 2022, 203: 379-388.
[21]李福勤, 王绍州, 郭彦夫. 聚吡咯-壳聚糖改性制备单价选择性阳离子交换膜[J]. 膜科学与技术, 2022, 42(3): 106-112.
[22]Zhan Y, Wan X, He S, et al. Design of durable and efficient poly(arylene ether nitrile)/bioinspired polydopamine coated graphene oxide nanofibrous composite membrane for anionic dyes separation[J]. Chem Eng J, 2018, 333: 132-145.
[23]Atkar A, Sridhar S, Deshmukh S, et al. Synthesis and characterization of sulfonated chitosan (SCS)/sulfonated polyvinyl alcohol (SPVA) blend membrane for microbial fuel cell application[J]. Mat Sci Eng B, 2024, 299: 116942.
[24]Yang Z, Sun P. Compare of three ways of synthesis of simple Schiff base[J]. Molbank, 2006, 2006(6): M514.
[25]Huang G, Li X. Applications of Michael addition reaction in organic synthesis[J]. Curr Org Synth, 2017, 14(4): 568-571.
[26]Vaselbehagh M ,Karkhanechi H ,Takagi R , et al.Effect of polydopamine coating and direct electric current application on anti-biofouling properties of anion exchange membranes in electrodialysis[J].J Membr Sci,2016 515:98-108.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号