陶瓷超滤膜在壳寡糖分离中的应用研究
作者:韩晴1, 闻娟娟2, 周唤宇1, 陈献富1, 邱鸣慧1, 范益群1
单位: 1.南京工业大学 化工学院 材料化学工程国家重点实验室, 南京 211816; 2. 南京工业大学 食品与轻工学院, 南京 211816
关键词: 陶瓷膜; 壳寡糖; 超滤; 分离
DOI号: 10.16159/j.cnki.issn1007-8924.2025.02.018
分类号: TQ028.8
出版年,卷(期):页码: 2025,45(2):153-161

摘要:
本文采用小孔径陶瓷超滤膜分离特定聚合度区间的壳寡糖,研究了操作条件如壳寡糖溶液的pH、浓度、温度以及操作压力对陶瓷膜分离壳寡糖性能的影响,并对操作参数进行优化。所用的小孔径陶瓷超滤膜截留分子量为5 000,纯水通量约为650 L/(m2·h)。研究表明,在pH为7时,膜分离过程中电荷对壳寡糖分离的影响较弱,主要依靠陶瓷膜孔径进行尺寸筛分。壳寡糖粗品溶液浓度越高,黏度越大,分离过程中浓差极化现象严重,DP2~5壳寡糖的透过率下降,当质量浓度为10 g/L时小孔径超滤膜通量较高,DP2~5壳寡糖的透过率最高。温度对膜分离过程中壳寡糖的截留性能影响较小,但料液温度越高,通量越大,温度35 ℃为最佳膜分离温度。膜分离过程中跨膜压差越大,DP2~5壳寡糖的截留率越高,跨膜压差0.1 MPa为最佳操作条件。此外,还考察了小孔径超滤膜分离过程中的稳定性,在连续运行720 min的过程中,陶瓷膜的通量及DP2~5壳寡糖的透过率都基本保持稳定,稳定通量在130 L/(m2·h)左右,分离因子可达到15。小孔径超滤膜在特定聚合度区间壳寡糖精准高效分离方面展现了良好的应用前景。
 
Tight ceramic ultrafiltration membranes were utilized to separate chitosan oligosaccharide within a specific degree of polymerization range. The effects of operating conditions, including pH, concentration of chitosan oligosaccharide solution, temperature and operating pressure  on separation performance were investigated, leading to optimization of the operating parameters. A tight ceramic ultrafiltration membrane with a molecular weight cut-off of 5 000 and a pure water flux of approximately 650 L/(m2·h) was employed. The results showed that at pH 7, the influence of charge on chitosan oligosaccharides was weak in the process of membrane separation, which mainly depended on the pore size of ceramic membrane for screening. Higher concentrations of crude chitosan oligosaccharide solutions led to increased viscosity and significant concentration polarization, reducing the transmittance of DP2~5 chitosan oligosaccharides. At a concentration of 10 g/L, the flux of the ultrafiltration membrane was maximized, along with the highest transmittance of DP2~5 chitosan oligosaccharides. Temperature had a minor effect on retention performance during membrane separation; however, higher feed temperatures enhanced flux, with an optimal separation temperature of 35 ℃. Increased transmembrane pressure difference resulted in higher retention of DP2~5 chitosan oligosaccharides, with the optimal operating condition being a transmembrane pressure difference of 0.1 MPa. In addition, the stability of tight ultrafiltration membrane during separation process was evaluated. During continuous operation for 720 min, the flux of ceramic membrane and the transmittance of DP2~5 chitosan oligosaccharides were basically stable, with a stable flux of about 130 L/(m2·h) and a separation factor of 15. Tight ceramic ultrafiltration membranes have demonstrated promising application prospects in the precise and efficient separation of chitosan oligosaccharides within specific DP ranges. 
 

基金项目:
国家重点研发计划项目(2022YFB3805001); 国家自然科学基金项目(21921006,22408162)

作者简介:
韩晴(1998-),女,江苏连云港人,硕士研究生,主要从事膜分离材料的研究与应用

参考文献:
[1]Gupta S, Vasanth D, Kumar A. Physicochemical analysis of chitosan oligosaccharide revealed its usefulness in effective delivery of drugs[J]. J Biomater Sci, Polymer Edition: 1-19.
[2]Wen J J, Chen Y S, Yan Q, et al. Experiment on and modeling of purification of fructooligosaccharides using ceramic nanofiltration membranes[J]. Sep Purifi Technol, 2023, 323: 124508. 
[3]Muanprasat C, Chatsudthipong V. Chitosan oligosaccharide: Biological activities and potential therapeutic applications[J]. Pharmacol Ther, 2017, 170: 80-97.
[4]常海洋, 赵安琪, 王婧, 等. 壳聚糖和壳寡糖的制备及应用[J]. 现代农业科技, 2024, (5): 161-164.
[5]Zhong C, Ukowitz  C, Domig K, et al. Short-chain cello-oligosaccharides: Intensification and scale-up of their enzymatic production and selective growth promotion among probiotic bacteria[J]. J Agr Food Chem, 2020, 68(32): 8557-8567.
[6]Khaisaat  K, Saovanee C, Angkana W, et al. Influence of degree of polymerization of low-molecular-weight chitosan oligosaccharides on the α-glucosidase inhibition[J]. Molecules, 2022, 27(23): 8129-8129.
[7]肖震. 新型混合模式色谱固定相制备及其在壳寡糖精准分离中的应用[D]. 天津: 河北工业大学, 2022.
[8]Castro-Muoz R, Boczkaj G, Gontarek E, et al. Membrane technologies assisting plant-based and agro-food by-products processing: A comprehensive review[J]. Trends Food Sci Tech, 2020, 95(C): 219-232.
[9]洪兰, 蒋尚昆, 刘美玲, 等. 酶膜反应器与手性分离膜在功能性糖生产中的应用展望[J]. 膜科学与技术, 2022, 42(2): 146-153.
[10]陈倩倩, 邱勇隽, 夏泉鸣, 等. 特定聚合度区间壳寡糖的膜分离制备技术[J]. 食品工业科技, 2019, 40(22): 163-168,174.
[11]郭佩, 赵黎明, 刘鲁杰, 等. 利用纳滤膜技术分离秸秆发酵液中糖和乳酸的研究[J]. 膜科学与技术, 2023, 43(3): 104-115.
[12]李佳明, 张宏建, 王靓, 等. 膜分离法提高麦芽四糖糖浆纯度的研究[J]. 食品与发酵工业, 2024, 50(9): 182-187,195.
[13]张伟, 陈献富, 范益群. 溶胶-凝胶法制备TiO2掺杂α-Al2O3高通量陶瓷超滤膜[J]. 膜科学与技术, 2020, 40(5): 16-22.
[14]Xie Y, Wang M, Chen X, et al. Optimized ceramic membrane-based method for efficient and acid-free rice protein preparation from alkaline extracts[J]. J Membr Sci, 2025, 713: 123355.
[15]笪晓薇, 齐婷, 柯威, 等. 膜分离技术在乳品加工行业中的应用[J]. 膜科学与技术, 2022, 42(4): 157-162.
[16]张丽华, 叶世莉, 刘思美, 等. 白及多糖的超滤陶瓷膜分离工艺研究[J]. 陕西中医药大学学报, 2022, 45(6): 34-39.
[17]张云, 齐婷, 石姝, 等. 陶瓷超滤膜在右旋糖酐分离中的应用[J]. 膜科学与技术, 2018, 38(2): 86-91,97.
[18]Wen J J, Han Q, Qiu M H, et al. Membrane technologies for the separation and purification of functional oligosaccharides: A review[J]. Sep Purifi Technol, 2024, 346: 127463.
[19]Jin Z H, Qiu M H, Wen J J, et al. Construction of ZrO2-CeO2 composite UF membranes for effective PVA recovery from desizing wastewater[J]. Sep Purifi Technol, 2023, 306: 122672. 
[20]Cheng S, Oatley D L, Williams P M, et al. Positively charged nanofiltration membranes: Review of current fabrication methods and introduction of a novel approach[J]. Adv in Col Interface Sci, 2011, 164(1/2): 12-20.
[21]Qi T W,Da X ,Zhang Y , et al. Modeling and optimal operation of intermittent feed diafiltration for refining oligodextran using nanoporous ceramic membranes[J]. Sep Purif Technol, 2020, 253: 117491.
[22]刘文丽, 严虞虞, 杨华瑞, 等. 高效液相色谱法测定壳寡糖的含量[J]. 化学分析计量, 2018, 27(6): 87-90.
[23]Cohen J L, Barile D, Liu Y, et al. Role of pH in the recovery of bovine milk oligosaccharides from colostrum whey permeate by nanofiltration[J]. Int Dairy J, 2017, 66: 68-75.
[24]Shi J F, Zhang W Y, Su Y L, et al. Composite polyelectrolyte multilayer membranes for oligosaccharides nanofiltration separation[J]. Carbohydr Polym, 2013, 94(1): 106-113.
[25]Goulas A K, Kapasakalidis P G, Sinclair H R, et al. Purification of oligosaccharides by nanofiltration[J]. J Membr Sci, 2002, 209(1): 321-335.
[26]孟子怡, 叶亚晗, 余浩卫, 等. 膜孔径对陶瓷膜净化生物发酵液性能的影响研究[J]. 膜科学与技术, 2021, 41(6): 95-102.
[27]Vegas R, Moure A, Domínguez H, et al. Evaluation of ultra- and nanofiltration for refining soluble products from rice husk xylan[J]. Bioresour Technol, 2007, 99(13): 5341-5351.
[28]Dong H, Wang Y, Zhao L, et al. Purification of DP 6 to 8 chitooligosaccharides by nanofiltration from the prepared chitooligosaccharides syrup[J]. Bioresour Bioprocess, 2014, 1(1): 20.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号