卷式膜元件内部结构设计与通量优化研究
作者:戴启军, 康燕, 吴宗策, 金焱, 韩前武, 张玲玲, 唐伦
单位: 沃顿科技股份有限公司, 贵阳 550000
关键词: 卷式膜元件; 组件构型; 淡网流阻; 压力损失; 数学模型
DOI号: 10.16159/j.cnki.issn1007-8924.2025.02.020
分类号: TQ028.8
出版年,卷(期):页码: 2025,45(2):173-183

摘要:
为了研究卷式膜元件产水量与膜片性能不匹配的问题,采用计算流体力学(CFD)模拟卷式膜元件内浓网、淡网流道压力分布,通过建立卷式膜元件产水流量数学模型计算淡网流道的压力损失,评估不同构型膜元件产水流量的差异。结果表明,产水流道内的压降梯度沿涡旋线方向,且随汇聚的纯水增加压降梯度逐渐变大;在不同条件不同构型的八寸工业膜元件中,淡网流道总压力损失为60~170 kPa,当膜页长度减小、淡网流阻系数减小、淡网厚度增加时,淡网流道的总压力损失减小,膜元件产水量有所提升;对于低阻力膜,不同构型的膜元件的产水量差异最大达14%,而对于高阻力膜,不同构型的膜元件的产水量差异最大则只有4.8%,膜元件产水差异在低阻力膜中更显著。本文开发的数学模型可以用于定量计算不同构型、不同流阻淡网、不同运行条件下的膜元件产水量,并评估其与膜片性能的差异,确定产水流量提升空间。
 
 In order to study the mismatch between the water yield of rolled membrane elements and the membrane performance, computational fluid dynamics (CFD) was used to simulate the pressure distribution of retentate spacer and permeate-side spacer flow channels in rolled membrane elements, and the pressure loss of permeate-side spacer flow channels was calculated by establishing a mathematical model of water production flow of rolled membrane elements. The results showed that the pressure drop gradient in the flow channel was along the direction of the vortex line, and the pressure drop gradient became larger with the increase of accumulated pure water. In eight-inch industrial membrane elements with different configurations under different conditions, the total pressure loss of the permeate-side spacer flow channel was in the range of 60~170 kPa. When the membrane page length was shortened, the flow resistance coefficient of the permeate-side spacer flow channel was reduced, and the thickness of the permeate-side spacer flow channel was increased, the total pressure loss of the permeate-side spacer flow channel was reduced, and the water production of the membrane element was increased. For low-resistance membrane, the difference in water production of membrane elements with different configurations was up to 14%, while for high-resistance membrane, the difference in water production of membrane elements with different configurations was only 4.8%, and the difference in water production of membrane elements was more significant in low-resistance membrane. The mathematical model developed in this paper can be used to quantitatively calculate the water production of membrane elements under different configurations, different flow resistance networks and different operating conditions, and to evaluate the difference between its performance and that of the diaphragm, and to determine the space of water production flow improvement. 
 

基金项目:
耐温型有机膜制备与应用关键技术研究(2023YFB3810500)

作者简介:
戴启军(1987-),男,贵州兴义人,硕士研究生,工程师,研究方向为膜组件设计及开发

参考文献:
[1]侯立安,张雅琴.海水淡化反渗透膜组件系统的研究现状[J].水处理技术,2015,41(10):21-25.
[2]杨旅,文志华,张鑫,等.家用反渗透膜元件流量评估及导布对流量影响研究[C]//中国家用电器协会.2020年中国家用电器技术大会论文集.美的集团中央研究院,2020:6.
[3]王双,梁剑,蔡相宇,等.组件设计对卷式反渗透膜元件抗污染性及能耗影响[J].膜科学与技术,2012,32(4):87-91.
[4]石月荣,王中阳,王力,等.聚乙烯/聚酰胺复合纳滤膜的卷式膜元件结构优化及理论分析[J].膜科学与技术,2021,41(2):18-24.
[5]Karabelas A J, Koutsou C P, Kostoglou M,et al. The effect of spiral wound membrane element design characteristics on its performance in steady state desalination - A parametric study[J]. Desalination, 2014, 332:76-90.
[6]Siddiqui A, Farhat N , Bucs S S,et al. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems[J]. Water Res, 2016,91:55-67.
[7]Liang Y Y,Toh  K Y, Fimbres W,et al. 3D CFD study of the effect of multi-layer spacers on membrane performance under steady flow[J].J Membr Sci, 2019,580:256-267.
[8]Siddiqui A, Lehmann S , Haaksman T V, et al. Porosity of spacer-filled channels in spiral-wound membrane systems:Quantification methods and impact on hydraulic characterization[J].Water Res, 2017, 119:304-311.
[9]方健,张峰,仲兆祥,等.CFD用于反渗透膜组件隔网构型的优化研究[J].膜科学与技术,2018,38(1):74-80.
[10]杨明智,侯蒙杰,伍泓宇,等.应用CFD优化螺旋卷式膜组件流道结构[J].膜科学与技术,2022,42(5):79-85.
[11]林炜琛,邵瑞朋,王乔,等.基于CFD和RSM的全效膜元件进水流道优化研究[J].膜科学与技术,2020,40(6):88-95.
[12]郭中权,邹湘,毛维东,等.矿井水脱盐过程中卷式反渗透膜性能的数值模拟研究[J].化工学报,2021, 72(9): 4808-4815.
[13]毛维东,孙邃,马赛,等.基于CFD模拟的某煤矿矿井水膜浓缩单元工艺优化与分析[J].能源环境保护,2021,35(6):76-83.
[14]刘洋,赵立新,周龙大,等.基于多孔跃迁模型的流体阻力压降特性研究[J].机床与液压,2022,50(7):17-26.
[15]王涛,展侠,李继定. 平板膜组件内部流体流动状态的可视化[J].化工学报,2014,65(1):71-77.
[16]Koutsou C P, Karabelas A J , Goudoulas T B,et al. Characteristics of permeate-side spacers of spiral wound membrane modules[J].Desalination, 2013,322:131-136.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号