两性SPEEK复合膜的制备及其质子交换膜电解水制氢性能研究
作者:陈福海12, 王丽华2, 韩旭彤1
单位: 1. 天津工业大学 材料科学与工程学院, 天津 300387; 2. 中国科学院化学研究所 极端环境高分子院重点实验室, 北京 100190
关键词: 磺化聚醚醚酮; 两性SPEEK聚合物; 复合膜; 电解水制氢
DOI号: 10.16159/j.cnki.issn1007-8924.2025.03.001
分类号: TQ317; TQ116.2+1
出版年,卷(期):页码: 2025,45(3):1-8

摘要:
将带氨基的分子侧链接枝到磺化聚醚醚酮(SPEEK)上,制备出分子链上同时含有磺酸基团和胺化基团的两性SPEEK聚合物(SNPEEK),并通过调控SPEEK及SNPEEK的比例,制备出系列两性SPEEK复合膜(AMPEEK)。测试AMPEEK膜的质子电导率、吸水率、溶胀率及机械性能等性能。结果表明,当SNPEEK在溶质中的质量分数为30%时,AMPEEK-30膜的综合性能最好,将其组装成膜电极用于质子交换膜电解水制氢(PEMWE)中,在2 V电压下可达1.15 A/cm2的高电流密度,是SPEEK原膜的2.3倍,是Nafion115膜的3.3倍,PEMWE性能得到大幅度提升。
In this study, the aminated molecular side link branch was linked to sulfonated polyetheretherketone (SPEEK), and amphoteric SPEEK polymer (SNPEEK) containing sulfonic group and aminated group in the molecular chain was prepared. A series of amphoteric SPEEK composite membranes (AMPEEK) were prepared by adjusting the ratio of SPEEK and SNPEEK. The mechanical properties, proton conductivity, water absorption and swelling rate of AMPEEK membrane were tested. It was found that when the proportion of SNPEEK was 30%, the comprehensive performance of AMPEEK30 membrane was the best. When it was assembled into a membrane electrode for proton exchange membrane water electrolysis (PEMWE), the high current density of 1.15 A/cm2 was achieved at a voltage of 2 V, which was 2.3 times that of SPEEK membrane and 3.3 times that of Nafion115 membrane. The performance of pemwe was greatly improved. 
 

基金项目:

作者简介:
陈福海(1999-),男,山西大同人,硕士研究生,主要研究方向为质子交换膜

参考文献:
[1]程文姬, 赵磊, 郗航, 等. “十四五”规划下氢能政策与电解水制氢研究[J]. 热力发电, 2022, 51(11): 181-188.
[2]Abdalla A M, Hossain S, Nisfindy O B, et al. Hydrogen production, storage, transportation and key challenges with applications: A review[J]. Energy Convers Manage, 2018, 165: 602-627.
[3]López-Fernández E, Sacedón C G, Gil-Rostra J, et al. Recent advances in alkaline exchange membrane water electrolysis and electrode manufacturing[J]. Molecules, 2021, 26: 6326-6350.
[4]Liu L, Ma H, Khan M, et al. Recent advances and challenges in anion exchange membranes development/application for water electrolysis: A review[J]. Membranes, 2024, 14: 85-109.
[5]万磊, 徐子昂, 王培灿, 等. 电解水制氢的耐碱离子膜研究进展[J]. 化工进展, 2022, 41(3): 1556-1568.
[6]Li X, Yao Y C, Tian Y R, et al. Recent advances in key components of proton exchange membrane water electrolysers[J]. Mater Chem Front, 2024, 8: 2493-2510.
[7]尹卓毓, 吴洪, 姜忠义. 阴离子交换膜离子传导率与耐碱稳定性研究进展[J]. 膜科学与技术, 2023, 43(6): 112-112.
[8]马晓锋, 张舒涵,何勇, 等. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报, 2022, 43(6): 420-427.
[9]Zhang Y Q, Zhang A L, Wang S, et al. Investigation of sulfonation degree and temperature on structure, thermal and membrane’s properties of sulfonated poly(ether ether ketone )[J]. Int J Hydrogen Energy, 2023, 48(37): 13791-13803.
[10]陈葛锋. 面向PEM电解水制氢的质子交换膜与膜电极性能研究[D]. 天津: 天津工业大学, 2023.
[11]Qian P H, Zhou W H, Zhang Y X, et al. Review and perspectives of sulfonated poly(ether ether ketone) proton exchange membrane for vanadium flow batteries[J]. Energy Fuels, 2023, 37: 17681-17707.
[12]Ren J H, Xu J M, Ju M C, et al. Long-term durable anion exchange membranes based on imidazole-functionalized poly(ether ether ketone) incorporating cationic metal-organic framework[J]. Adv Powder Mater, 2022, 1(2):100017-100027.
[13]Wu J, Nie S J, Liu H, et al. Design and development of nucleobase modified sulfonated poly(ether ether ketone) membranes for high-performance direct methanol fuel cells[J]. J Mater Chem A, 2022, 10: 19914-19924.
[14]Liu B, Jiang Y H, Wang H X, et al. Sulfonated poly(ether ether ketone) hybrid membranes with amphoteric graphene oxide nanosheets as interfacial reinforcement for vanadium redox flow battery[J]. Energy Fuels, 2020, 34: 2452-2461.
[15]Zhang X C, Long J S, Wang M X, et al. Using bifunctionalized NH2-UiO-66-SO3H to improve the performance of sulfonated poly(ether ether ketone) in proton exchange membranes[J]. Int J Hydrogen Energy, 2024, 61: 1495-1504.
[16]Fan C Y, Wu H, Li Y, et al. Incorporating self-anchored phosphotungstic acid@triazole-functionalized covalent organic framework into sulfonated poly(ether ether ketone) for enhanced proton conductivity[J]. Solid State Ionics, 2020, 349: 115316-115325.
[17]Long J S, Zhang X C, Zeng S Q, et al. Constructing a long-range proton conduction bridge in sulfonated polyetheretherketone membranes with low DS by incorporating acidbase bi-functionalized metal organic frameworks[J]. Int J Hydrogen Energy, 2023, 48: 2001-2012.
[18]Wang G, Zhang M, He Z, et al. Novel amphoteric ion exchange membranes by blending sulfonated poly(ether ether ketone) with ammonium polyphosphate for vanadium redox flow battery applications[J]. J Appl Polym Sci, 2021, 138:e50592.
[19]Chen D J, Chen X L, Ding L F, et al. Advanced acid-base blend ion exchange membranes with high performance for vanadium flow battery application[J]. J Membr Sci, 2018, 553: 25-31.
[20]Liu S, Wang L H, Li D, et al. Novel amphoteric ion exchange membranes by blending sulfonated poly(ether ether ketone)/ quaternized poly(ether imide) for vanadium redox flow battery applications[J]. J Mater Chem A, 2015, 3: 17590-17597.
[21]刘绪锟, 王丽华, 仇智, 等. 高质子传导率的GSPEEK凝胶膜制备及其PEMWE性能[J]. 膜科学与技术, 2024, 44(4): 28-35.
[22]Wang H X, Pang L, Li Y H, et al. Ultra-high selective SPEEK-based proton exchange membrane for vanadium flow battery enabled by homologous structuralized amphoteric poly(ether ether ketone) polymer[J]. J Membr Sci, 2025, 717:123662.
[23]Wang X, Wang S, Liang D, et al. Low vanadium permeability membranes based on flexible hydrophilic side chain grafted polybenzimidazole/polymeric ionic liquid for VRFBs[J]. Batteries, 2023, 9: 141-154.
[24]Ueki T, Watanabe M. Macromolecules in ionic liquids: Progress, challenges, and opportunities[J]. Macromolecules, 2008, 41(11): 3739-3749.
 
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号