MOF808-(NH2)改性聚酰胺纳滤膜的制备及其性能研究
作者:王紫薇1, 沈玥1, 王涛12, 冯英楠1, 赵之平1
单位: 1. 北京理工大学 化学与化工学院, 北京 102488; 2. 北京理工大学 唐山研究院, 唐山 063000
关键词: MOF-808(NH2); 绿色合成; 界面聚合; 纳米复合纳滤膜; 高渗透率
DOI号: 10.16159/j.cnki.issn1007-8924.2025.03.002
分类号: TQ028.8
出版年,卷(期):页码: 2025,45(3):9-22

摘要:
金属有机框架材料(MOFs)因其规整孔道结构、聚合物相容性和高比表面积等特性,在纳滤膜功能化改性领域展现出显著优势,但其应用仍受限于纳米分散稳定性及绿色制备等关键挑战。本研究选取具有优异水稳定性的MOF-808作为改性纳米材料,采用两步法绿色合成工艺制备了粒径约60 nm、比表面积达1 702 m2/g的MOF-808粒子,并通过氨基修饰获得MOF-808(NH2)。基于预沉积辅助界面聚合,成功构建了MOF-808(NH2)改性聚酰胺纳米复合膜。结果表明:MOF-808(NH2)负载量增加促使膜表面形貌从结节结构向颗粒聚集态转变,粗糙度提升,亲水性增强。优化后的NF-2膜[MOF808(NH2)负载量3.18  μg/cm2]表现出优异渗透选择性,水通量达177.15 L/(m2·h·MPa),同时对Na2SO4和NaCl的截留率分别达到95.06%和19.24%。在100 h连续运行测试中,NF-2膜表现出优异的长期稳定性。本研究发展的功能化MOFs定向修饰策略,为高性能TFN膜的理性设计与制备提供了新的调控路径。
 
Metal-organic framework materials (MOFs) have shown remarkable advantages in the field of functional modification of nanofiltration membranes because of their regular pore structure, polymer compatibility and high specific surface area, but their application is still limited by key challenges such as nano-dispersion stability and green preparation. In this study, MOF808 with excellent water stability was selected as a modified nano-material. MOF808 particles with a particle size of about 60 nm and a specific surface area of 1 702 m2/g were prepared by a two-step green synthesis process, and MOF808(NH2) was obtained by amino modification. Based on pre-deposition assisted interfacial polymerization, MOF808(NH2) modified polyamide nanocomposites were successfully constructed. The results showed that the increase of MOF808(NH2) loading promoted the change of membrane surface morphology from nodular structure to particle aggregation state, and the roughness and hydrophilicity were improved. The optimized NF2 membrane [MOF808(NH2) loading of 3.18 μg/cm2] showed excellent permeation selectivity, with a water flux of 177.15 L/(m2·h·MPa), and the rejection rates of Na2SO4 and NaCl reached 95.06% and 19.24% respectively. NF2 membrane showed excellent long-term stability in 100 hours of continuous operation test. The directional modification strategy of functionalized MOFs developed in this study provides a new regulatory path for the rational design and preparation of high-performance TFN membrane. 
 

基金项目:
国家自然科学基金面上项目(52370063); 河北省自然科学基金面上项目(B2022105012)

作者简介:
王紫薇(1999-),女,河北保定人,硕士研究生,从事纳滤膜制备及应用研究

参考文献:
[1]Hasan N, Pushpalatha R, Manivasagam V S, et al. Global sustainable water management: A systematic qualitative review[J]. Water Resour Manage, 2023, 37(13): 5255-5272.
[2]石紫, 王志,王宠,等. 染料分离有机纳滤膜制备技术研究进展[J]. 膜科学与技术,2020, 40(1): 340-351.
[3]Zhang Y, Hao Z, Hussein I, et al. Tunable ionic sieving membrane via reactive layer-by-layer assembly of porous organic cages[J]. Adv Funct Mater, 2024, 34(25): 2315750.
[4]Perveen S, Hussain S G, Ahmed M J, et al. A viable and sustainable flat-membrane plate-and-frame module for spent acid regeneration and metal ion recovery[J]. Heliyon, 2023, 9(8): e18344.
[5]Du Y C, Pramanik B K, Zhang Y, et al. Recent advances in the theory and application of nanofiltration: A review[J]. Curr Pollut Rep, 2022, 8: 51-80.
[6]侯立安, 刘晓芳. 纳滤水处理应用研究现状与发展前景[J]. 膜科学与技术,2010, 30(4): 1-7.
[7]Li X, Wang Z, Han X L, et al. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review[J]. J Membr Sci, 2021, 640: 119765.
[8]Di J W, Wang H Y, Zhang L F, et al. Recent progress in advanced polyamide nanofiltration membranes via interfacial polymerization for desalination and beyond[J]. Desalination, 2024, 592: 118167.
[9]Chi M Z, Zheng P Y, Wei M X, et al. Polyamide composite nanofiltration membrane modified by nanoporous TiO2 interlayer for enhanced water permeability[J]. J Ind Eng Chem, 2022, 115: 230-240.
[10]Kang X, Liu X, Liu J H, et al. Spin-assisted interfacial polymerization strategy for graphene oxide-polyamide composite nanofiltration membrane with high performance[J]. Appl Surf Sci, 2020, 508: 145198.
[11]Xue Q, Meng W Q, Zhu J Y, et al. Constructing carboxylated MXene interlayer in polyamide nanofiltration membrane for enhancing perm-selectivity and antifouling performance[J]. J Membr Sci, 2023, 683: 121860.
[12]Jiang H, Yang N, Hao Y F, et al. Highly permeable polyamide nanofiltration membranes fabricated via the construction of anionic covalent organic frameworks/polydopamine composite interlayer[J]. Sep Purif Technol, 2024, 347: 127590.
[13]Agarwal P, Hefner  R E, Ge S, et al. Nanofiltration membranes from crosslinked troger’s base polymers of intrinsic microporosity (PIMs)[J]. J Membr Sci, 2020, 595: 117501.
[14]Jaiswal D K, Aand D, Rao P K, et al. Diazomethane mediated sealing of carboxylic moieties in MOFs: Opening doors for increased hydrophobicity[J]. Appl Surf Sci, 2023, 620: 156788.
[15]Bonneau M, Lavenn C, Ginet P, et al. Upscale synthesis of a binary pillared layered MOF for hydrocarbon gas storage and separation[J]. Green Chem, 2020, 22(3): 718-724.
[16]Fan W D, Wang X, Xu B, et al. Amino-functionalized MOFs with high physicochemical stability for efficient gas storage/separation, dye adsorption and catalytic performance[J]. J Mater Chem A, 2018, 6(47): 24486-24495.
[17]Wu D, Zhang P F, Yang G P, et al. Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications[J]. Coord Chem Rev, 2021, 434: 213709.
[18]Xie Q, Chen Z Y, Jin W, et al. Tannic acid etched ZIF8 incorporated thin-film nanocomposite nanofiltration membrane with enhanced performance[J]. Appl Surf Sci, 2024, 660: 159975.
[19]Zhao B, Long X L, Wang H L, et al. Polyamide thin film nanocomposite membrane containing polydopamine modified ZIF8 for nanofiltration[J]. Colloid Surf A - Physicochem Eng Asp, 2021, 612: 125971.
[20]Wu Y Z, Li H X, Xu Z L, et al. Ceramic hollow fiber NF membrane incorporating UiO66 for the chlorinated hydrocarbons removal[J]. Chem Eng J, 2022, 435: 134789.
[21]Xu X M, Hua G Y, Chen Y X, et al. Dually charged polyamide nanofiltration membrane incorporated UiO66(NH2)2: Synergistic rejection of divalent cations and anions[J]. Sep Purif Technol, 2023, 311: 123223.
[22]Echaide-Górriz C, Sorribas S, Téllez C, et al. MOF nanoparticles of MIL68(Al), MIL101(Cr) and ZIF11 for thin film nanocomposite organic solvent nanofiltration membranes[J]. RSC Adv, 2016, 6(93): 90417-90426.
[23]Samsami S, Sarrafzadeh M H, Ahmadi A. Surface modification of thin-film nanocomposite forward osmosis membrane with super-hydrophilic MIL-53 (Al) for doxycycline removal as an emerging contaminant and membrane antifouling property enhancement[J]. Chem Eng J, 2022, 431: 133469.
[24]Gong Y Q, Gao S J, Tian Y Y, et al. Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UiO66NH2 active layer for high-performance desalination[J]. J Membr Sci, 2020, 600: 117874.
[25]Liu Y Y, Zhu R, Srinivasakannan C, et al. Application of nanofiltration membrane based on Metal-Organic Frameworks (MOFs) in the separation of magnesium and lithium from salt lakes[J]. Separations, 2022, 9(11): 344.
[26]Xia M J, Zhang W T, Xu Y C, et al. Polyamide membranes with a ZIF8@tannic acid core-shell nanoparticles interlayer to enhance nanofiltration performance[J]. Desalination, 2022, 541: 116042.
[27]Song N, Xie X, Chen D, et al. Tailoring nanofiltration membrane with three-dimensional turing flower protuberances for water purification[J]. J Membr Sci, 2021, 621: 118985.
[28]Zhao Q P, Zhao D L, Chung T S. Thin-film nanocomposite membranes incorporated with defective ZIF8 nanoparticles for brackish water and seawater desalination[J]. J Membr Sci, 2021, 625: 119158.
[29]Lai Z P. Development of ZIF8 membranes: Opportunities and challenges for commercial applications[J]. Curr Opin Chem Eng, 2018, 20: 78-85.
[30]Zhang H F, Zhao M, Yang Y, et al. Hydrolysis and condensation of ZIF8 in water[J]. Microporous Mesoporous Mat, 2019, 288: 109568.
[31]Dai S, Simms C, Dovgaliuk I, et al. Monodispersed MOF808 nanocrystals synthesized via a scalable room-temperature approach for efficient heterogeneous peptide bond hydrolysis[J]. Chem Mater, 2021, 33(17): 7057-7066.
[32]Lee G, Ahmed I, Hossain M A, et al. Preparation and functionalization of metal-organic frameworks, MOF808s, and their application in adsorption[J]. Coord Chem Rev, 2025, 524: 216325.
[33]Lei Y T, Zhu L J, Xu J L, et al. The metal organic framework of UiO66NH2 reinforced nanofiltration membrane for highly efficient ion sieving [J]. J Environ Chem Eng, 2023, 11: 111222.
[34]Zheng X, Wang T, Li S H, et al. Reticulated polyamide thin-film nanocomposite membranes incorporated with 2D boron nitride nanosheets for high-performance nanofiltration [J]. ACS Appl Mater Interfaces, 2023, 15: 28606-28617.
[35]Efome J E, Rana D, Matsuura T, et al. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution[J]. ACS Appl Mater Interfaces, 2018, 10(22): 18619-18629.
[36]Kang F W, Peng M Y, Lei D Y, et al. Recoverable and unrecoverable Bi3+-related photoemissions induced by thermal expansion and contraction in LuVO4∶Bi3+ and ScVO4∶Bi3+ compounds[J]. Chem Mater, 2016, 28(21): 7807-7815.
[37]Bagi S D, Myerson A S, Román-Leshkov Y. Solvothermal crystallization kinetics and control of crystal size distribution of MOF808 in a continuous flow reactor[J]. Cryst Growth Des, 2021, 21(11): 6529-6536.
[38]Xuan K, Pu Y F, Li F, et al. Metal-organic frameworks MOF808X as highly efficient catalysts for direct synthesis of dimethyl carbonate from CO2 and methanol[J]. Chin J Catal, 2019, 40(4): 553-566.
[39]Kevat S, Lad V N. Green synthesis of zirconium-based MOF-808 by utilizing sustainable synthesis approaches[J]. J Organomet Chem, 2023, 999: 122832.
[40]Zhang H Y, Yang Y, Li C C, et al. A new strategy for constructing covalently connected MOF@COF core-shell heterostructures for enhanced photocatalytic hydrogen evolution[J]. J Mater Chem A, 2021, 9(31): 16743-16750.
[41]Pan X H, Zheng Y L, Chen R, et al. Cocrystal of sulfamethazine and p-aminobenzoic acid: Structural establishment and enhanced antibacterial properties[J]. Cryst Growth Des, 2019, 19(4): 2455-2460.
[42]Tang X C, Luo Y W, Zhang Z J, et al. Effects of functional groups of -NH2 and -NO2 on water adsorption ability of Zrbased MOFs (UiO-66)[J]. Chem Phys, 2021, 543: 111093.
[43]Li Z, Zhao S J, Wang H Z, et al. Functional groups influence and mechanism research of UiO66type metal-organic frameworks for ketoprofen delivery[J]. Colloid Surf B - Biointerfaces, 2019, 178: 1-7.
[44]Liu H R, Zhang M, Zhao H, et al. Enhanced dispersibility of metal-organic frameworks (MOFs) in the organic phaseviasurface modification for TFN nanofiltration membrane preparation[J]. RSC Adv, 2020, 10(7): 4045-4057.
[45]Wang Y, Yang Z X, Liu L, et al. Construction of high performance thin-film nanocomposite nanofiltration membrane by incorporation of hydrophobic MOF-derived nanocages[J]. Appl Surf Sci, 2021, 570: 151093.
[46]Bano S, Mahmood A, Kim S J, et al. Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties[J]. J Mater Chem A, 2015, 3(5): 2065-2071.
[47]Liu P P, Xing Q L, Huang R Q, et al. Incorporating hydrophilic amino-modified UiO66 nanoparticles into polyphenylsulfone membrane for improved dye/salt separation[J]. Chem Eng J, 2024, 499: 156096.
[48]Huang X J, Chen Y B, Feng X S, et al. Incorporation of oleic acid-modified Ag@ZnO core-shell nanoparticles into thin film composite membranes for enhanced antifouling and antibacterial properties[J]. J Membr Sci, 2020, 602: 117956.
[49]Li Y, Zhang X, Yang A, et al. Polyphenol etched ZIF8 modified graphene oxide nanofiltration membrane for efficient removal of salts and organic molecules[J]. J Membr Sci, 2021, 635: 119521.
[50]Gu Z Y, Yu S L, Zhu J Y, et al. Incorporation of lysine-modified UiO66 for the construction of thin-film nanocomposite nanofiltration membrane with enhanced water flux and salt selectivity[J]. Desalination, 2020, 493: 114661.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号