COF改性聚酰亚胺纳米纤维/PFSA复合质子交换膜研究
作者:孟晓宇, 鹿钟麒, 彭路漫, 刘心茹, 乔佳怡, 丛川波, 周琼
单位: 中国石油大学(北京) 新能源与材料学院 油气装备材料失效与腐蚀防护北京市重点实验室, 北京 102249
关键词: 质子交换膜; 聚酰亚胺; 全氟磺酸; 纳米纤维; 燃料电池
DOI号: 10.16159/j.cnki.issn1007-8924.2025.03.004
分类号: TB324; TQ031
出版年,卷(期):页码: 2025,45(3):35-43

摘要:
质子交换膜(PEM)作为燃料电池的核心部件,发挥着重要的作用,得到广泛的研究。聚合物纳米纤维已被广泛用作全氟磺酸质子交换膜的增强材料,以用于改善其因吸水而产生的尺寸稳定性问题。大量的研究表明单层纳米纤维对复合膜溶胀起积极作用,而增加纤维层数对其性能也有显著的影响。本研究在全氟磺酸基体中添加不同层数的在表面吸附了磺酸类共价有机框架COF(TpPa-SO3H)的聚酰亚胺纤维膜(PINF),制备出多层纤维复合膜,并对其性能进行表征和分析。结果表明,双层聚酰亚胺纤维膜增强的D-TpPa-SO3H@PINF/PFSA性能最佳,各项性能得到明显提升。80 ℃电导率为263.7 mS/cm,相比于全氟磺酸纯膜,电导率提高了63.4%,面积溶胀率降低了30.6%,氢渗透系数降低了76.0%,功率密度最大为282.6 mW/cm2。
 
Proton exchange membrane (PEM) plays an important role as a core component of fuel cells and has been widely studied. Polymer nanofibers have been widely used as reinforcement materials for perfluorosulfonic acid proton exchange membranes for improving their dimensional stability problems due to water absorption. Numerous studies have shown that single-layer nanofibers play a positive role in the swelling of composite membranes, while increasing the number of fiber layers also has a significant effect on their performance. In this paper, multilayer fiber composite membranes were prepared by adding different layers of polyimide fiber membrane (PINF) with sulfonic acid covalent organic framework COF (TpPa-SO3H) adsorbed on the surface in a perfluorosulfonic acid matrix, and their properties were characterized and analyzed. Among them, the double-layer polyimide fiber membrane reinforced D-TpPa-SO3H@PINF/PFSA had the best performance, with a significant improvement in various properties: the conductivity at 80 ℃ was 263.7 mS/cm, which was 63.4% higher than that of the pure membrane of PFSA, with a 30.6% reduction in the area dissolution rate, a 76.0% reduction in hydrogen permeability coefficient, and the maximum power density was 282.6 mW/cm2. 

基金项目:
北京市高精尖学科建设项目

作者简介:
孟晓宇(1980-),男,黑龙江齐齐哈尔人,博士研究生,副教授,主要研究方向为高分子材料,E-mail:mengxy@cup.edu.cn

参考文献:
[1]Xu G, Dong X, Xue B, et al. Recent approaches to achieve high temperature operation of Nafion membranes[J]. Energies, 2023, 16(4): 1565.
[2]Liu Q, Li Z, Wang D, et al. Metal organic frameworks modified proton exchange membranes for fuel cells[J]. Front Chem, 2020, 8: 694.
[3]Prykhodko Y, Fatyeyeva K, Hespel L, et al. Progress in hybrid composite Nafion-based membranes for proton exchange fuel cell application[J]. Chem Eng J, 2021 (409): 127329.
[4]张永明,唐军柯,袁望章.燃料电池全氟磺酸质子交换膜研究进展[J]. 膜科学与技术, 2011, 31(3): 76-85.
[5]Hou C, Zhang X, Li Y, et al. Porous nanofibrous composite membrane for unparalleled proton conduction[J]. J Membr Sci, 2018, 550: 136-144.
[6]Huang M, Jiang Z, Li F, et al. Preparation and characterization of a PFSA-PVDF blend nanofiber membrane and its preliminary application investigation[J]. New J Chem, 2017, 41(15): 7544-7552.
[7]Zeng L, Lu X, Yuan C, et al. Self-enhancement of perfluorinated sulfonic acid proton exchange membrane with its own nanofibers[J]. Adv Mater, 2024, 36(15): 2305711.
[8]Zhang X, Trieu D, Zheng D, et al. Nafion/PTFE composite membranes for a high temperature PEM fuel cell application[J]. Ind Eng Chem Res, 2021, 60(30): 11086-11094.
[9]Hwang C K, Lee K A, Lee J, et al. Perpendicularly stacked array of PTFE nanofibers as a reinforcement for highly durable composite membrane in proton exchange membrane fuel cells[J]. Nano Energy, 2022, 101: 107581.
[10]Guccini V, Carlson A, Yu S, et al. Highly proton conductive membranes based on carboxylated cellulose nanofibres and their performance in proton exchange membrane fuel cells[J]. J Mater Chem A, 2019, 7(43): 25032-25039.
[11]Wang S, Shi L, Zhang S, et al. Proton-conducting amino acid-modified chitosan nanofibers for nanocomposite proton exchange membranes[J]. Eur Polym J, 2019, 119: 327-334.
[12]Sood R, Giancola S, Donnadio A, et al. Active electrospun nanofibers as an effective reinforcement for highly conducting and durable proton exchange membranes[J]. J Membrane Sci, 2021, 622: 119037.
[13]Zhu B, Sui Y, Wei P, et al. NH2-UiO-66 coated fibers to balance the excellent proton conduction efficiency and significant dimensional stability of proton exchange membrane[J]. J Membr Sci, 2021, 628: 119214.
[14]Powers D, Wycisk R, Pintauro P N. Electrospun tri-layer membranes for H2/Air fuel cells[J]. J Membr Sci, 2019, 573: 107-116.
[15]Olabi A G, Wilberforce T, Alanazi A, et al. Novel trends in proton exchange membrane fuel cells[J]. Energies, 2022, 15(14): 4949.
[16]邢丹敏, 杜学忠, 于景荣, 等. 燃料电池用质子交换膜研究进展[J]. 电源技术, 2001(S1): 171-174.
[17]Wei P, Sui Y, Li X, et al. Sandwich-structure PI/SPEEK/PI proton exchange membrane developed for achieving the high durability on excellent proton conductivity and stability[J]. J Membr Sci, 2022, 644: 120116.
[18]Sahoo R, Mondal S, Pal S C, et al. Covalent-organic frameworks (COFs) as proton conductors[J]. Adv Energy Mater, 2021, 11(39): 2102300.
[19]Li Y, Wang C, Ma S, et al. Fabrication of hydrazone-linked covalent organic frameworks using alkyl amine as building block for high adsorption capacity of metal ions[J]. ACS Appl Mater Interfaces, 2019, 11(12): 11706-11714.
[20]Meng X, Peng Q, Wen J, et al. Sulfonated poly(ether ether ketone) membranes for vanadium redox flow battery enabled by the incorporation of ionic liquid-covalent organic framework complex[J]. J Appl Polym Sci, 2023, 140(18): e53802.
[21]Chandra S, Kundu T, Dey K, et al. Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks[J]. Chem Mater, 2016, 28(5): 1489-1494.
[22]Tsushima S, Iwamoto Y, Horai A, et al. Investigation of water-molecule network in hydrated polymer electrolyte membranes by raman spectroscopy: Effect of polymer structure and cation impregnation[J]. ECS Trans, 2011, 41(1):1407-1411.
[23]Fang Y, Sui C, Wang C, et al. Strong and flaw-insensitive two-dimensional covalent organic frameworks[J]. Matter-US, 2021,4(3): 1017-1028.
[24]Dong H, Dong J,Li X, et al. Preparation of high-temperature resistant polyimide fibers by introducing the p-phenylenediamine into kapton-type polyimide[J].ACS Appl Polym Mater,2024, 6(4): 2371-2380.
[25]Zhu C, Xue T, Ma Z, et al. Mechanically strong and thermally insulating polyimide aerogel fibers reinforced by prefabricated long polyimide fibers[J].ACS Appl Mater Interfaces,2023, 15(9): 12443-12452.
[26]Qiu G, Ma W, Wu L. Low dielectric constant polyimide mixtures fabricated by polyimide matrix and polyimide microsphere fillers[J].Polym Int, 2020,69:485-491.
[27]Xu T, Wang C, Hu Z, et al. High strength and stable proton exchange membrane based on perfluorosulfonic acid/polybenzimidazole[J].Chinese J Polym Sci, 2022,40: 764-771.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号