胺化哌嗪羧酸聚酰胺纳滤膜的制备及性能研究
作者:宋刚福1, 胡智媛1, 高亚伟2, 王小亻毛2
单位: 1. 华北水利水电大学 环境与市政工程学院, 郑州 450000; 2. 清华大学 环境学院, 环境模拟与污染控制国家重点联合实验室, 北京 100084
关键词: 聚酰胺纳滤膜; 哌嗪2羧酸; 表面电荷调控; 胺化改性
DOI号: 10.16159/j.cnki.issn1007-8924.2025.03.005
分类号: TQ028.8
出版年,卷(期):页码: 2025,45(3):44-53

摘要:
研究了基于哌嗪2羧酸聚酰胺膜的胺化改性方法及对膜性能的影响。采用界面聚合技术,以哌嗪2羧酸和均苯三甲酰氯分别为两相单体制备负电性纳滤初始膜,并通过有机环境胺化进行二次改性,明显提升了负电性纳滤膜表面的正电荷密度。其中,多乙烯多胺直接表面改性法显著提升膜表面正电荷密度和水渗透系数[最高170.0 L/(m2·h·MPa)],增加MgCl2截留(60.3%)和降低Na2SO4截留(27.4%);而有机环境层状界面聚合法可使纳滤膜具备适中的水渗透系数[75.0 L/(m2·h·MPa)]、减小的膜孔径(0.37 nm)和近电中性的膜表面 (MgCl2和Na2SO4截留率分别为71.5%和78.3%)。同时,利用孔径相异/相近和电性不同的纳滤膜截留全氟化合物,并结合膜结构表征,显示膜表面位置的电荷对截留发挥关键作用,是尺寸筛分效应的有力补充。
 
The amination modification strategies for polyamide nanofiltration (NF) membranes based on piperazine-2-carboxylic acid (PIP-COOH) were systematically investigated. The negatively charged NF membrane was first prepared via interfacial polymerization of PIP-COOH in aqueous phase and trimesoyl chloride (TMC) in organic phase, followed by modification through two methods: surface modification and layer-by-layer interfacial polymerization (LIP) using polyethylene polyamine (PEPA). The surface modification increased membrane surface positive charge density and water permeability [up to 170.0 L/(m2·h·MPa)], enhancing MgCl2 rejection (60.3%) but reducing Na2SO4 rejection (27.4%). However, the LIP produced membranes with moderate water permeability [75.0 L/(m2·h·MPa)], reduced pore size (0.37 nm), and near-neutral membrane surface, achieving the rejection of 71.5% for MgCl2 and 78.3% for Na2SO4. Perfluorinated compound rejection experiments highlighted the importance of charge effects stemming from membrane top surface under similar pore sizes. Characterization confirmed that the amination in organic milieu changed the membrane surface structure, charge distribution, and active layer thickness. 
 

基金项目:
国家自然科学青年基金项目(52300095)

作者简介:
宋刚福(1977-),男,辽宁营口人,教授,博士研究生,研究方向为膜法水处理、饮用水安全与评价及河流生态研究等

参考文献:
[1]Liu W F, Livingston J L, Wang L, et al. Pressure-driven membrane desalination[J]. Nat Rev Methods Primers, 2024, 4(1):1-22.
[2]Szymczyk A, Fievet P. Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model[J]. J Membr Sci, 2005, 252(1): 77-88.
[3]Li W L, Fu P, Lin W T, et al. High-performance thin-film composite (TFC) membranes with 2D nanomaterial interlayers: An overview[J]. Results  Eng, 2024, 21: 101932.
[4]Zhang Q F, Zhang Z G, Dai L, et al. Novel insights into the interplay between support and active layer in the thin film composite polyamide membranes[J]. J Membr Sci, 2017, 537: 372-383.
[5]Zhu Q Y, Xu Z Y, Fu J H, et al. Can the mix-charged NF membrane directly obtained by the interfacial polymerization of PIP and TMC?[J]. Desalination, 2023, 558: 116623.
[6]Huang B Q, Tang Y J, Zeng Z X, et al. Microwave heating assistant preparation of high permselectivity polypiperazine-amide nanofiltration membrane during the interfacial polymerization process with low monomer concentration[J]. J Membr Sci, 2020, 596: 117718.
[7]Li X, Wang Z, Han X L, et al. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review[J]. J Membr Sci, 2021, 640: 119765.
[8]Bai C L, Gu Z Y, Gao X R, et al. Stepwise increasing TMC concentration in NF membranes fabrication for controlled PA layer thickness, compactness, and charge distribution: Maintaining high permeance, enhancing desalination, and mechanistic insights[J]. Sep Purif Technol, 2025, 359: 130404.
[9]Yu W H, Gan Z Q, Wang J R, et al. A novel negatively charged nanofiltration membrane with improved and stable rejection of Cr (Ⅵ) and phosphate under different pH conditions[J]. J Membr Sci, 2021, 639: 119756.
[10]Zhu Z Y, Zhang Q P, Wan Z, et al. Highly negative charged triazine-based polyimide nanofiltration membrane for purification of vat dyes wastewater[J]. Sep Purif Technol, 2025, 364: 132470.
[11]Boo C H, Wang Y K, Zucker I, et al. High performance nanofiltration membrane for effective removal of perfluoroalkyl substances at high water recovery[J]. Environ Sci Technol, 2018, 52(13): 7279-7288.
[12]Wu M B, Ye H, Zhu Z Y, et al. Positively-charged nanofiltration membranes constructed via gas/liquid interfacial polymerization for Mg2+/Li+ separation[J]. J Membr Sci, 2022, 644: 119942.
[13]Tian X Y, Ji D W, Feng H W, et al. Fabrication of positively charged composite nanofiltration membranes with “multilayer interlocking” structure based on ZIF8 layer anchored constrained growth strategy for Mg2+/Li+ separation[J]. J Membr Sci, 2025, 713: 123310.
[14]Wu H h, Zhao H Y, Lin Y K, et al. Positively-charged PEI/TMC nanofiltration membrane prepared by adding a diamino-silane coupling agent for Li+/Mg2+ separation[J]. J Membr Sci, 2023, 672: 121468.
[15]Xu P, Gonzales R R, Hong J, et al. Fabrication of highly positively charged nanofiltration membranes by novel interfacial polymerization: Accelerating Mg2+ removal and Li+ enrichment[J]. J Membr Sci, 2023, 668: 121251.
[16]Tang M J, Liu M L, Li L, et al. Solvation-amination-synergy that neutralizes interfacially polymerized membranes for ultrahigh selective nanofiltration[J]. AIChE J, 2022, 68(6): e17602-17612.
[17]Yao A Y, Du J C, Sun Q, et al. Flexible covalent organic network with ordered honeycomb nanoarchitecture for molecular separations[J]. ACS Nano, 2023, 17(22): 22916-22927.
[18]He B Y, Peng H W, Chen Y, et al. High performance polyamide nanofiltration membranes enabled by surface modification of imidazolium ionic liquid[J]. J Membr Sci, 2020, 608: 118202.
[19]Liu L h, Du J C, Yao A Y, et al. Covalent organic network membranes with tunable nanoarchitectonics from macrocycle building blocks for graded molecular sieving[J]. ACS Appl Mater Interfaces, 2024, 16(3): 4283-4294.
[20]张桢琳,王露,程亮,等.表面接枝法荷正电复合纳滤膜制备及其镁锂分离性能[J].膜科学与技术, 2024, 44(2):1-7.
[21]Wu D H, Huang Y F, Yu S C, et al. Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride[J]. J Membr Sci, 2014, 472: 141-153.
[22]Choi W, Jeon S, Kwon S J, et al. Thin film composite reverse osmosis membranes prepared via layered interfacial polymerization[J]. J Membr Sci, 2017, 527: 121-128.
[23]Shin M G, Choi W, Lee J H. Highly selective and pH-stable reverse osmosis membranes prepared via layered interfacial polymerization[J]. Membranes, 2022, 12(2):156-169.
[24]Tang S H, Chen Y H, Zhang H B, et al. A novel loose nanofiltration membrane with high permeance and anti-fouling performance based on aqueous monomer piperazine-2-carboxylic acid for efficient dye/salt separation[J]. Chem Eng J, 2023, 475: 146111.
[25]Bowen W R, Welfoot J S. Modelling the performance of membrane nanofiltration-critical assessment and model development[J]. Chem Eng Sci, 2002, 57(7): 1121-1137.
[26]Bandini S, Vezzani D. Nanofiltration modeling: the role of dielectric exclusion in membrane characterization[J]. Chem Eng Sci, 2003, 58(15): 3303-3326.
[27]Hayduk W, Laudie H. Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions[J]. AIChE J, 2004, 20(3): 611-615.
[28]Hao Y F, Fang Y, Zhang L F, et al. Ternary deep eutectic solvent enhanced the diffusion control of amine monomer for highly permeable and anti-fouling polyamide nanofiltration membranes[J]. Sep Purif Technol, 2024, 330: 125371.
[29]Mishra S, Singh A K, Singh J K. Ferrous sulfide and carboxyl-functionalized ferroferric oxide incorporated PVDF-based nanocomposite membranes for simultaneous removal of highly toxic heavy-metal ions from industrial ground water[J]. J Membr Sci, 2020, 593: 117422.
[30]Gocen T, Bayari S H, Guven M H. Conformational and vibrational studies of arachidonic acid, light and temperature effects on ATR-FTIR spectra[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 203: 263-272.
[31]Feng Y, Meng X, Wu Z, et al. A novel polyurea nanofiltration membrane constructed by PEI/TA-MoS2 for efficient removal of heavy metal ions[J]. Sep Purif Technol, 2022, 300: 121785.
[32]Freger V, Ramon G Z. Polyamide desalination membranes: Formation, structure, and properties[J]. Prog Polym Sci, 2021, 122: 101451.
[33]Du Z W, Deng S B, Bei Y, et al. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents - A review[J]. J Hazard Mater, 2014, 274: 443-454.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号