高通量抗污染聚酰胺复合膜的制备及性能 |
作者:刘新典, 戴磊, 庄思杰, 孙昌, 龙柱 |
单位: 江南大学 纺织科学与工程学院 短纤维功能材料研究室, 无锡 214122 |
关键词: 聚酰胺复合膜; 抗污染性能; 高渗透性; 聚乙烯醇; 羧甲基纤维素 |
DOI号: 10.16159/j.cnki.issn1007-8924.2025.03.007 |
分类号: TQ028.8 |
出版年,卷(期):页码: 2025,45(3):66-77 |
摘要: |
通过物理涂覆交联方式,以戊二醛(GA)为交联剂,在聚酰胺(PA)复合膜表面构建聚乙烯醇(PVA)涂层的基础上,以羧甲基纤维素(CMC)为添加剂提高其渗透性能及抗污染性能。研究表明,当PVA的质量分数为1.0%、CMC的质量分数为0.2%时,制得的含PVA-1.0/CMC-0.2/GA涂层的聚酰胺复合膜纯水通量为53.2 L/(m2·h),相较于仅含PVA-1.0/GA涂层的膜[纯水通量为46.5 L/(m2·h)],纯水通量提升了14.4%。这一提升归因于PVA相对规整且含有大量的羟基,易通过氢键形成结晶区,从而阻碍水分子的渗透;而CMC的加入降低了涂层的结晶度,从而改善了膜的水渗透性。抗污染实验结果表明,与原始聚酰胺膜相比,PVA/GA和PVA/CMC/GA涂层显著提升了聚酰胺复合膜的抗污染性能,且添加CMC后,涂层的渗透性得到了显著提高。这种高纯水通量且抗污染的复合膜在水处理、分离及环境净化等领域具有广泛的应用前景。 |
By employing a physical coating-crosslinking method using glutaraldehyde (GA) as the crosslinking agent, a polyethylene glycol (PVA) coating was constructed on the surface of a polyamide (PA) composite membrane. Carboxymethyl cellulose (CMC) was used as an additive to enhance its permeability and anti-fouling properties. The study demonstrated that when the mass fraction of PVA was 1.0% and the mass fraction of CMC was 0.2%, the resulting PA composite membrane with a PVA-1.0/CMC-0.2/GA coating achieved a pure water flux of 53.2 L/(m2·h), which was a 14.4% increase in pure water flux compared to the membrane with only a PVA-1.0/GA coating [pure water flux of 46.5 L/(m2·h)].This improvement was attributed to the relatively regular structure of PVA, which contains a large number of hydroxyl groups that can form crystalline regions through hydrogen bonding, thereby hindering the permeation of water molecules. The addition of CMC reduced the crystallinity of the coating, thereby improving the membrane’s water permeability. Anti-fouling experiments indicated that compared to the pristine PA membrane, the PVA/GA and PVA/CMC/GA coatings significantly enhanced the anti-fouling performance of the polyamide composite membrane, with the addition of CMC further improving the permeability of the coating. This high-purity water flux and anti-fouling composite membrane has broad application prospects in water treatment, separation, and environmental purification. |
基金项目: |
作者简介: |
刘新典(1999-),河南南阳人,硕士研究生,主要研究方向为聚酰胺膜抗污染涂层的制备及水处理应用 |
参考文献: |
[1]Bai X, Wang Q, Tan M, et al. Spongy and anti-pollution MXene/Ag2S/cellulose acetate membrane for sustainable solar-driven interfacial evaporation and water purification[J]. Chem Eng J, 2024, 489: 151441. [2]Cao M, Chen Y, Sha J, et al. All-cellulose nanofiber-based sustainable triboelectric nanogenerators for enhanced energy harvesting[J]. Polymers, 2024, 16(13): 1784. [3]Esmaeili M, Ara I, Ippolitov V, et al. Unlocking sustainable solutions: Harnessing recycled polyester from waste polyester/cotton blended textiles for membrane development[J]. Chem Eng Sci, 2024, 298: 120367. [4]王炎锋,吕振华,姜鹏,等.聚酰胺复合膜表面高渗透性抗污染涂层的构建[J]. 膜科学与技术, 2020, 40(1):31-36,52. [5]Lyu Z, Ding G, Liu M, et al. Improved separation performance, anti-fouling property and durability of polyamide-based RO membrane by constructing a polyvinyl alcohol/polyquaternium-10 surface coating layer[J]. Desalination, 2023, 564: 116755. [6]Goh P S, Othman M H D, Matsuura T. Waste reutilization in polymeric membrane fabrication: A new direction in membranes for separation[J]. Membranes, 2021, 11(10): 782. [7]Guo Y, Wang Y, Jia F, et al. Microbial fabrication of cellulose nanofiber-based ultrafiltration membrane: A sustainable strategy for membrane manufacture[J]. Cellulose, 2023, 30(8): 5001-5017. [8]Ho N A D, Leo C P. A review on the emerging applications of cellulose, cellulose derivatives and nanocellulose in carbon capture[J]. Environ Res, 2021, 197: 111100. [9]Khanzada N K, Al-Juboori R A, Khatri M, et al. Sustainability in membrane technology: Membrane recycling and fabrication using recycled waste[J]. Membranes, 2024, 14(2): 52. [10]Kim S, Nguyen Thi H, Kang J, et al. Sustainable fabrication of solvent resistant biodegradable cellulose membranes using green solvents[J]. Chem Eng J, 2024, 494: 153201. [11]Lehtonen J, Chen X, Beaumont M, et al. Impact of incubation conditions and post-treatment on the properties of bacterial cellulose membranes for pressure-driven filtration[J]. Carbohydr Polym, 2021, 251: 117073. [12]Lin P H, Su Y C, Chen C L, et al. Characterization of fouled ultrafiltration membranes from a full-scale wastewater reclamation plant in iron and steel industry[J]. Int J Environ Sci Technol, 2023, 20(10): 11501-11512. [13]Mautner A, Bismarck A. Bacterial nanocellulose papers with high porosity for optimized permeance and rejection of nm-sized pollutants[J]. Carbohydr Polym, 2021, 251: 117130. [14]Paul H R, Tirrell M V, Rowan S J. One-component nanocomposite membranes from polymer grafted cellulose nanocrystals[J]. ACS Appl Nano Mater , 2024, 7(4): 4210-4219. [15]Phler T, Mautner A, Aguilar-Sanchez A, et al. Pilot-scale modification of polyethersulfone membrane with a size and charge selective nanocellulose layer[J]. Sep Purif Technol , 2022, 285: 120341. [16]Prézélus F, Tiruta-Barna L, Guigui C, et al. A generic process modelling - LCA approach for UF membrane fabrication: Application to cellulose acetate membranes[J]. J Membr Sci , 2021, 618: 118594. [17]Tiwary S K, Singh M, Chavan S V, et al. Graphene oxide-based membranes for water desalination and purification[J]. NPJ 2D Mater Appl, 2024, 8(1): 27. [18]Vuong P, Mckinley A, Kaur P. Understanding biofouling and contaminant accretion on submerged marine structures[J]. NPJ Mater Degrad , 2023, 7(1): 50. [19]Waheed A, Sajid M, Baig U, et al. Role of covalent crosslinking and 2D nanomaterials in the fabrication of advanced organic solvent nanofiltration membranes: A review of fabrication strategies, recent advances, and challenges[J]. Sep Purif Technol, 2025, 353: 128431. [20]Wang W, Li W, Li H, et al. Development of novel high anti-pollution polyamide/polysulfate disk tubular reverse osmosis membrane modules and their application in simulated space bathing wastewater[J]. J Water Process Eng, 2024, 60: 105119. [21]Wang Y, Cui Y, Gui Q, et al. PEG promoted anti-fouling adsorptive membranes with excellent adsorption performance for removal of pharmaceuticals from water[J]. J Environ Chem Eng, 2023, 11(1): 109263. [22]Wang Y, Guo Y, Yang C, et al. Bio-inspired fabrication of adsorptive ultrafiltration membrane for water purification: Simultaneous removal of natural organic matters, lead ion and organic dyes[J]. J Environ Chem Eng, 2023, 11(3): 109798. [23]Yavuzturk Gul B, Pekgenc E, Vatanpour V, et al. A review of cellulose-based derivatives polymers in fabrication of gas separation membranes: Recent developments and challenges[J]. Carbohydr Polym, 2023, 321: 121296. [24]Yi J, Choe G, Park J, et al. Graphene oxide-incorporated hydrogels for biomedical applications[J]. Polym J, 2020, 52(8): 823-837. [25]Zakria H S, Othman M H D, Kadir S H S A, et al. Fabrication of high performance PVDF hollow fiber membrane using less toxic solvent at different additive loading and air gap[J]. Membranes, 2021, 11(11): 843. [26]Zhou W, Geng Y, Zhou T, et al. Feasible synthesis of anti-fouling amphiphobic composite membrane by surface modification with SiO2 nanoparticles for effective membrane distillation[J]. Sep Purif Technol, 2025, 358: 130366. [27]Zhao J, Tian S N, Huang Q L, et al. Ultra-highly photocatalytic removal of pollutants by polypyrrole/cadmium sulfide/polyether sulfone hybrid porous membrane in single-pass mode[J]. Chem Eng J, 2022, 432: 134300-134314. [28]Shi F M, Ma Y X, Ma J, et al. Preparation and characterization of PVDF/TiO2 hybrid membranes with ionic liquid modified nano-TiO2 particles[J]. J Membr Sci, 2013, 427: 259-269. [29]Huang J, Zhang K S, Wang K, et al. Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties[J]. J Membr Sci , 2012, 423: 362-370. [30]Liu J D, Tian C, Xiong J X, et al. Polypyrrole blending modification for PVDF conductive membrane preparing and fouling mitigation[J]. J Colloid Interface Sci, 2017, 494: 124-129. [31]Kang G D, Cao Y M. Application and modification of poly (vinylidene fluoride) (PVDF) membranes: A review[J]. J Membr Sci,2014,463(1):145-165. [32]Xie L, Liu Y, Zhang W, et al. A dopamine/tannic-acid-based co-deposition combined with phyticacid modification to enhance the anti-fouling property of RO membrane[J]. Membranes, 2021(11) :342. [33]Xie L, Liu Y, Xu S, et al. Enhanced anti-biofouling properties of BWRO membranes via the deposition of poly(catechol/polyamine) and ag nanoparticles[J]. Membranes, 2023(13) :530. [34]Liu F, Hashim N A, Liu Y, et al. Progress in the production and modification of PVDF membranes[J]. J Membr Sci ,2011,375(1):1-27. [35]Zhang R, Liu Y, He M, et al. Antifouling membranes for sustainable water purification: Strategies and mechanisms[J]. Chem Soc Rev,2016,45(21):5888-5924. |
服务与反馈: |
【文章下载】【加入收藏】 |
《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com
京公网安备11011302000819号