有机无机复合纳滤膜的载体影响研究
作者:张月华12, 孙啸1, 陈献富1, 邱鸣慧1, 范益群1
单位: 1. 南京工业大学 化工学院, 材料化学工程国家重点实验室, 南京 211816; 2. 清源创新实验室, 泉州 362801
关键词:
DOI号: 10.16159/j.cnki.issn1007-8924.2025.03.008
分类号: TQ051.893
出版年,卷(期):页码: 2025,45(3):78-87

摘要:
抗生素作为一种新型污染物,已经从医药废水中扩散到天然水,给水资源保护和水处理带来严峻挑战。截留分子量在200~1 000 的纳滤膜是去除废水中抗生素的理想选择。其中,以陶瓷膜为载体的有机无机复合纳滤膜具有良好的稳定性和耐压性,近年来备受关注。然而,陶瓷膜载体对界面聚合过程和分离层形成的影响规律尚不清楚,很大程度上限制了复合纳滤膜性能的提升。对此,本文系统研究了不同孔径(500、300、100、20和5 nm)陶瓷载体对复合纳滤膜性能的影响。研究表明,适当增加陶瓷载体孔径制备的聚酰胺网络结构相对松散,能够有效降低渗透阻力,提升复合纳滤膜渗透通量。其次,具有低表面粗糙度和窄孔径分布的陶瓷载体有助于制备得到完整无缺陷的分离层。最后,优选平均孔径为100 nm的氧化铝陶瓷膜作为载体,制备得到了高性能的有机无机复合纳滤膜,纯水渗透通量达141.2 L/(m2·h·MPa),对四环素的截留率超过98%,在抗生素废水的处理中展现了良好的应用前景。
 
Antibiotics, as a new type of pollutant, have been spread from pharmaceutical wastewater to natural water, posing a serious challenge to water conservation. Nanofiltration membranes with molecular weight cut-off of 200~2 000 is one of the most promising techniques for the removal of antibiotics from wastewater. Among them, the thin-film composite (TFC) membranes using ceramic membranes as support have attracted much attention in recent years due to their excellent stability and pressure resistance. However, the laws on how ceramic supports affect the polymerization process and the formation of separation layer is still uncleared. In this work, the ceramic membranes with different pore sizes of 500, 300,100, 20  and 5 nm was selected to investigate the important role of support. It was shown that the polyamide network structure prepared by appropriately increasing the pore size of ceramic support was relatively loose, resulting in the reduced transmission resistance and enhanced permeance. Secondly, the ceramic support with smoother surface and narrower pore size distribution is conductive to construct a complete and defective separation layer. Finally, the Al2O3 ceramic membrane with a pore size of 100 nm was preferred, and nanofiltration membranes with a pure water permeance of 141.2 L/(m2·h·MPa) and more than 98% rejection of tetracycline was prepared, showing prospects in the treatment of antibiotic wastewater. 
 

基金项目:
国家重点研发项目(2022YFB3805001); 清源创新实验室重大项目(00122003); 吉安市“揭榜挂帅”项目(pzzy-wtht-20220117014)

作者简介:
张月华(1997-),女,河南三门峡人,博士研究生,主要从事膜分离材料的研究与应用

参考文献:
[1]Tamtam F, Mercier F, Le Bot B, et al. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions[J]. Sci Total Environ, 2008, 393(1): 84-95.
[2]Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the River Basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environ Sci Technol, 2015, 49(11): 6772-6782.
[3]Zhao S S, Ba C Y, Yao Y X, et al. Removal of antibiotics using polyethylenimine cross-linked nanofiltration membranes: Relating membrane performance to surface charge characteristics[J]. Chem Eng J, 2018, 335: 101-109.
[4]Hu Y R, Jin L, Zhao Y, et al. Annual trends and health risks of antibiotics and antibiotic resistance genes in a drinking water source in East China[J]. Sci Total Environ, 2021, 791: 148152.
[5]Zhang G R, Zhang C, Liu J, et al. Occurrence, fate, and risk assessment of antibiotics in conventional and advanced drinking water treatment systems: From source to tap[J]. J Environ Manage, 2024, 358: 120746.
[6]Cheng X Q, Wang Z X, Zhang Y Q, et al. Bio-inspired loose nanofiltration membranes with optimized separation performance for antibiotics removals[J]. J Membr Sci, 2018, 554: 385-394.
[7]Cheng X Q, Wang Z X, Jiang X, et al. Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials[J]. Prog Mater Sci, 2018, 92: 258-283.
[8]张桢琳, 王露, 程亮, 等. 表面接枝法荷正电复合纳滤膜制备及其镁锂分离性能[J]. 膜科学与技术, 2024, 44(2): 1-7.
[9]李 燕, 赵有璟, 李志录, 等. 聚酰胺纳滤膜表面羧基密度调控及其抗污染性能[J]. 膜科学与技术, 2024, 44(4): 48-57.
[10]鲍金铭, 王文亮, 胡云霞. 面向新兴污染物去除的纳滤膜研究进展[J]. 膜科学与技术, 2024, 44(6): 1-12.
[11]Hao Y F, Yang N, Zhang L F, et al. Tailored design of highly permeable polyamide-based nanofiltration membrane via a complex-dissociation regulated interfacial polymerization[J]. Chem Eng J, 2023, 452: 139197.
[12]Deng M, Lin Z, Hu C, et al. Fabricating ultrathin polyamide nanofiltration membranes by surface negative charge-driven assembly strategy for fast desalination[J]. J Membr Sci, 2023, 680: 121758.
[13]何鹏鹏, 赵颂, 毛晨岳, 等. 耐溶剂复合纳滤膜的研究进展[J]. 化工学报, 2021, 72(2): 727-747.
[14]高蔓彤, 王升欢, 刘继桥, 等. 基膜表面孔隙率对聚酰胺复合纳滤膜性能的影响[J]. 膜科学与技术, 2022, 42(5): 64-69,78.
[15]Li X, Wang Z, Han X L, et al. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review[J]. J Membr Sci, 2021, 640: 119765.
[16]Huo X W, Jing Z J, Wang H T, et al. Sodium dodecyl sulfate/CUIO66 regulation of nanofiltration membrane with pleated and thin polyamide layer structure[J]. Desalination, 2022, 538: 115927.
[17]Misdan N, Lau W J, Ismail A F, et al. Study on the thin film composite poly(piperazine-amide) nanofiltration membrane: Impacts of physicochemical properties of substrate on interfacial polymerization formation[J]. Desalination, 2014, 344: 198-205.
[18]Misdan N, Lau W J, Ismail A F, et al. Formation of thin film composite nanofiltration membrane: Effect of polysulfone substrate characteristics[J]. Desalination, 2013, 329: 9-18.
[19]Wang J T, Xu R Z, Yang F, et al. Probing influences of support layer on the morphology of polyamide selective layer of thin film composite membrane[J]. J Membr Sci, 2018, 556: 374-383.
[20]Chong J Y, Wang R. From micro to nano: Polyamide thin film on microfiltration ceramic tubular membranes for nanofiltration[J]. J Membr Sci, 2019, 587: 117161.
[21]Xu D L, Luo X S, Jin P R, et al. A novel ceramic-based thin-film composite nanofiltration membrane with enhanced performance and regeneration potential[J]. Water Res, 2022, 215: 118264.
[22]Zhang Y H, Xu P, Chen X F, et al. Preparation of high permeance thin-film composite nanofiltration membrane on macroporous ceramic support[J]. J Membr Sci, 2022, 663: 121076.
[23]苟立民,段丽君,柯威,等.不同孔径陶瓷膜硅烷改性及油水分离性能研究[J]. 膜科学与技术, 2024, 44(1): 16-26.
[24]Zhang Y H, Tan Y S, Yang Y, et al. Facile fabrication of ceramic-based highly permeable composite nanofiltration membranes by in-situ interfacial polymerization[J]. Desalination, 2024, 573: 117176.
[25]Zhang Y H, Yang Y, Xu P, et al. From single tube to multi-channel configuration: Constructing nanofiltration membranes with superior adhesion strength on the ceramic support by interfacial polymerization[J]. Desalination, 2024, 592: 118162.
[26]Liu Z Y, Wen H, Jiang S H, et al. A comparative study of antibiotic treatment by different charged nanofiltration membranes[J]. Desalination, 2025, 597: 118316.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号